Ground Investigation No. 2071724 Factual and Interpretative Report [DRAFT] Cowbridge Primary School Vale of Glamorgan

May 2021

Geotechnical and environmental services you can rely on.

CJ Associates Geotechnical Limited Portview Road, Avonmouth, Bristol, BS11 9JE Tel: 0117 982 1473

Ground Investigation No. 2071724 Factual and Interpretative Report [DRAFT] Cowbridge Primary School Vale of Glamorgan

May 2021

Report Status:	Draft	
Issue Number:	1	
Issue Date:	May 2021	
Prepared By:		
Signed:		
Checked By:		
Signed:		

Client:

Morgan Sindall Construction & Infrastructure Ltd.

CONTENTS:

1. INTRODUCTION	. 1
1.1 Instruction	. 1
1.2 Proposed Development	1
1.3 Brief and Report Scope	1
1.4 Limitations	1
2. THE SITE	. 3
21 Site Location & Description	3
2 2 Published Geology	3
3 FIFI DWORK	<u> </u>
3 1 General	. .
3.2 Window Sampler Boring	5
3.3 Trial Pitting	5
3.4 Groundwater / Gas Monitoring	5
3.5 In Situ Tests	6
3.5.1 Standard Penetration Tests	
3.5.2 In situ CBR tests (TRL Dynamic Probe)	0
3.5.3 Soakaway Tests	
3.6 The Longing of Soils and Rocks	
4 LABORATORY WORK	,
1 Geotechnical Tests	۰. و
4.1 Geolecillical Tests	0 Q
	10
5.1 Soil Brofilo	10
5.1 Soli Floille	10
5.2 ODSITUCTIONS	10
5.5 Groundwaler	11
5.5 Vieual / Olfactory Evidence of Contamination	11
	11
0. ENGINEERING PROPERTIES OF SOILS ENGOUNTERED	12
6.1 General	12
6.2 Made Ground	12
6.4 Populto of In Situ Tooting	15
	10
7. GEUTECHNICAL ASSESSMENT	10
7.1 Proposed Development	16
7.2 Ground Conditions Encountered	10
7.3 Foundation Considerations	10
7.3.1 Shallow Depth Spread Foundations	10
7.3.2 Piles	19
7.3.3 Ground Improvement	19
7.3.4 Controlled Modulus Columns	20
7.3.5 Kalls	21
7.4 Pavement Design	21
7.5 Chemical Attack on Burled Concrete	22
7.6 Suitability of Excavated Materials	23
7.6.1 Granular Made Ground / Netural Clay	23
7.6.2 Conesive Made Ground / Natural Clay	23
7.7 Temporary works	23
	24
8. ENVIRONMENTAL ASSESSMENT	23
0.1 INTroduction	20
0.2 Conceptual Model	23
0.2.1 Contaminant Sources	25
8.2.2 Contaminant Pathways:	26
0.2.5 Contaminant Receptors:	21
	27
0.3 JUIL RISK ASSESSIBILIT	27

8.3.2 Risk of Soil Contamination – After Development	28
8.4 Groundwater & Surface Water Risk Assessment	32
8.5 Land Gas Risk Assessment	32
8.6 Risk from Asbestos	33
8.7 Risk to Buried Services	33
8.8 Risk to Vegetation/Planting	34
8.9 Site Risk Assessment	34
8.10 Discussion and Conclusions	34
8.10.1 Contaminated Soils	34
8.10.2 Contaminated Groundwater	35
8.10.3 Land Gas	35
8.10.4 Waste Disposal	
8.10.5 Site Personnel	
8.10.6 Other Matters	
9. LIST OF REFERENCES	

APPENDICES:

LOGSHEETS

Borehole Log Sheets and Installation Details Trial Pit Log Sheets

IN SITU TEST RESULTS

CBRs Soakaway Tests

GROUNDWATER / GAS MONITORING RESULTS

LABORATORY TESTS

Geotechnical Laboratory Tests Contamination Laboratory Tests

DRAWINGS

Site Location Plan Exploratory Hole Location Plan SPT Plot Plasticity Chart

1.INTRODUCTION

1.1 Instruction

C.J. Associates Geotechnical Limited (CJA) was instructed by Morgan Sindall Construction & Infrastructure Ltd (the Client) to carry out a ground investigation at Cowbridge Primary School in the Vale of Glamorgan, South Wales.

1.2 Proposed Development

According to information supplied by the Client, the proposed development will comprise a new 2-storey school building with associated areas of soft landscaping and hardstanding and a new MUGA pitch.

1.3 Brief and Report Scope

The general specification for the works was provided by [Client/Engineer] and incorporated the brief to undertake window sample boreholes and trial pits with associated sampling and in-situ testing, gas/groundwater monitoring, in situ CBR and soakaway testing, laboratory geotechnical and contamination testing and the provision of a Factual & Interpretative Report.

This report presents full factual records of the site work carried out, the ground conditions encountered in the exploratory holes, the in situ and laboratory test results and the results of any monitoring of ground installations. All information collected has been used to provide an interpretation of the ground conditions, with recommendations on geotechnical design and potential ground contamination risks for the proposed development.

1.4 Limitations

The recommendations and opinions expressed in this report are based on the strata observed in the exploratory holes, the results of the site and laboratory tests, and information obtained as part of the desk study or provided by others. CJA take no responsibility for conditions that have not been revealed by the exploratory holes, or which occur between them. Information provided from other sources is taken in good faith and CJA cannot guarantee its accuracy.

The report has been prepared exclusively for the Client, for the site area indicated, and for the purpose stated. CJA accepts no responsibility for any site, client or type of

development not indicated in this report. This report should be reviewed at all stages of construction by someone familiar with the terms and assumptions it contains. It is essential that a suitably qualified and experienced engineer be appointed for the design of the works, and supervise construction.

2.THE SITE

2.1 Site Location & Description

The site is an existing sports pitch located immediately southwest of the main buildings and associated infrastructure of Cowbridge Comprehensive School in the Vale of Glamorgan, South Wales at National Grid Reference ST 00232 74882, and is shown on the Site Location Plan, included in the Appendices to this report and in the aerial photograph below.

2.2 Published Geology

According to the British Geological Survey (BGS) the site is underlain by superficial Glaciofluvial Deposits overlying the Mercia Mudstone of Triassic Age.

The Glaciofluvial Deposits is described as comprising mostly coarse-grained sand and gravel with some layers of clay and silt. The underlying Mercia Mudstone is described as typically consisting of conglomerate and/or breccia with clasts derived locally from rocks lying immediately below the unconformable base of these deposits. The matrix generally consists of finer-grained rock fragments or, less commonly, siltstone, sandstone or micritic limestone.

3.FIELDWORK

3.1 General

The fieldwork, scheduled by the Client was carried out by CJA on 7th April 2021 and comprised window sampling, installation of standpipes, trial pitting and associated sampling and in situ testing.

The fieldwork was carried out generally in accordance with BS 5930:2015 *Code of Practice for Site Investigations, Eurocode 7*, and the Client's instructions, unless otherwise stated. The exploratory hole locations were determined by the Client and are shown approximately on the Exploratory Hole Location Plan, included in the Appendices. A summary of exploratory holes undertaken is presented in the following table.

Hole	Type*	Depth (m)	Date Started	Date Finished	Backfill Details**		
WS1	WS	5.00	07/04/21	07/04/21	SP		
WS2	WS	5.00	07/04/21	07/04/21	А		
WS3	WS	5.00	07/04/21	07/04/21	А		
WS4	WS	5.00	07/04/21	07/04/21	SP		
WS5	WS	5.00	07/04/21	07/04/21	Α		
WS6	WS	5.00	07/04/21	07/04/21	SP		
TP1	TP	1.20	07/04/21	07/04/21	Α		
TP2	TP	1.30	07/04/21	07/04/21	Α		
TP3	TP	1.50	07/04/21	07/04/21	Α		
TP4	TP	1.40	07/04/21	07/04/21	Α		
TP5	TP	1.20	07/04/21	07/04/21	Α		
TP6	TP	1.50	07/04/21	07/04/21	Α		
DCP01	TRL	0.82	07/04/21	07/04/21	-		
DCP02	TRL	0.82	07/04/21	07/04/21	-		
DCP03	TRL	0.66	07/04/21	07/04/21	-		
DCP04	TRL	0.62	07/04/21	07/04/21	-		
DCP05	TRL	0.36	07/04/21	07/04/21	-		
DCP06	TRL	0.79	07/04/21	07/04/21	-		
*WS = Wi **A = Aris	*WS = Window Sample, TP = Trial Pit, trl = In Situ CBR Test.						

Summary of Exploratory Holes Undertaken

All exploratory hole locations were scanned for buried services using a Cable Avoidance Tool (CAT).

On completion all samples recovered from the site were taken to CJA's laboratory for further examination and testing. Details of the depths and types of samples recovered are indicated on the attached log sheets.

3.2 Window Sampler Boring

Six window sample boreholes (designated WS1 to WS6 inclusive) were each sunk to a depth of 5.00m below existing ground level.

Window sampler boring is carried out with a small, track-mounted rig, which uses a chain-driven trip hammer to drive sampling tubes or penetrometers into the ground. These tools are coupled to the anvil of the hammer by solid drill rods. Sampling tubes comprise "windowless samplers", which are plain sampler tubes in which a continuous disturbed sample is recovered within a semi-rigid plastic liner. In order to reduce friction within the borehole, sampling tubes of progressively smaller diameter are used as the borehole depth increases. Sampler diameters generally range from between approximately 90mm to 50mm.

Standard penetration tests (SPT's), as described below in the *In Situ Tests* section, were conducted in suitable materials.

Groundwater observations were noted where possible. These observations relate to the time of the investigation only, and do not necessarily reflect seasonal fluctuations.

In accordance with the Client's instructions, a 50mm diameter standpipe was installed in WS1, WS4 and WS6, at depths of between 3.0m and 4.0m below ground level. Installation and backfill details are shown with the appropriate borehole logsheet.

3.3 Trial Pitting

To supplement the borehole investigation six trial pits (designated TP1 to TP6 inclusive) were excavated to depths of between 1.2m and 1.5m below existing ground level, using a wheeled excavator, under the direct and continuous supervision of CJA.

In situ Hand Shear Vane (HSV) tests were completed as appropriate, and representative disturbed samples were recovered from the excavated material as pitting proceeded. Details of groundwater conditions were noted.

The trial pits were backfilled immediately on completion of sampling and testing.

3.4 Groundwater / Gas Monitoring

CJA carried out groundwater/gas monitoring in standpipes after the fieldwork period, the results of which are presented in the Appendices to this report.

3.5 In Situ Tests

3.5.1 Standard Penetration Tests

Standard Penetration Tests (SPT's), were carried out in the window sample boreholes in accordance with BS EN ISO 22476-3. Standard Penetration Tests (SPT's) consist of the dynamic driving of a 450mm long, 50mm diameter "split-spoon" sampler, using a standard 63.5kg trip hammer, falling over a distance of 760mm. The hammer anvil is connected to the sampler by steel boring rods. A small disturbed sample is usually recovered from the sampling barrel during the test. In very coarse-grained materials, or weak rocks, the sampler (or sampler shoe) is generally replaced by a 60° solid steel cone (referred to as SPT (c) tests). No samples are recovered using a solid cone.

The number of hammer blows required to drive the sampler or cone each consecutive 75mm is recorded, and is shown on the attached borehole logs. The first 150mm is regarded as the seating penetration, and the last 300mm as the test drive. The result of the test, referred to as the "N-value", consists of the total number of blows relating to the test drive. Conventionally, the test drive is terminated after 50 blows if the full 300mm penetration has not been achieved. In this case the N-value is stated as N >

3.5.2 In situ CBR tests (TRL Dynamic Probe)

The California Bearing Ratio (CBR) of near surface materials was examined using hand held dynamic cone penetrometer. Each test was performed at existing ground surface. The test is performed by using an 8kg weight dropping a height of 575mm to drive a 20mm diameter 60 degree cone into the subsoil. The blow counts are recorded against penetration achieved and the results are plotted graphically. The CBR value of the various layers is then determined by reading from a graph showing the DCP-CBR relationship by Kleyn and Van Heerd⁽¹⁹⁸³⁾. Test Results are included in the Appendices to this report.

3.5.3 Soakaway Tests

Soakaway tests were carried out in all the trial pits generally in accordance with BRE Digest 365⁽²⁰¹⁶⁾, the results of which are included in the Appendices to this Report.

3.6 The Logging of Soils and Rocks

The logging of soils and rocks has been carried out in accordance with BS5930⁽²⁰¹⁵⁾ except where superseded by the soil and rock description methodology in BS EN14688-1⁽²⁰⁰²⁾, BS EN 14688-2⁽²⁰⁰⁴⁾ and BS EN 14689-1⁽²⁰⁰³⁾.

4. LABORATORY WORK

4.1 Geotechnical Tests

A programme of laboratory testing was carried out on samples taken from the various strata to assist in classification and determine the engineering properties of the materials underlying the site. The testing was scheduled by CJA and carried out by CJA, Structural Soils and Envirolab. The test procedures used were generally in accordance with the methods described in BS1377:1990 and BS EN 17892-1:2014. Details of the specific tests used in each case are given below:

TEST	STANDARD	No.
Water Content	BS EN 17892-1 : 2014	12
Liquid Limit, Plastic Limit, Plasticity Index	BS1377:1990 Part 2, Clause 4/5	12
Particle size distribution (wet)	BS1377:1990 Part 2, Clause 9.2	4
Sedimentation by hydrometer	BS1377:1990 Part 2, Clause 9.5	1
Sulphate content of 2:1 soil:water extract	BS1377:1990 Part 3, Clause 5	5
pH value	BS1377:1990 Part 3, Clause 9	5

The results of the laboratory geotechnical tests are included in the Appendices to this Report.

4.2 Contamination Tests

The environmental chemistry of the ground was investigated by specialist chemical analysis of selected samples, scheduled by CJA and carried out by Envirolab.

Details of the specific tests used in each case are given below:

TEST	No.
CJA General Contamination Suite:	7
Arsenic, Beryllium, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc, Cyanide, Thiocyanate, Phenol, Sulphate (SO4), Sulphide, pH, Sulphur, Soil Organic Matter and speciated Polyaromatic Hydrocarbons (PAH).	
Asbestos Screen	7
Speciated Total Petroleum Hydrocarbons (TPH)	4
Total TPH	3

The results of the laboratory contamination tests are included in the Appendices to this Report.

The range of potentially hazardous contaminants present on the site can be wide and varied, and the suite has been chosen to reflect both commonly found contaminants and others indicated by research to have a significant risk of being present. It is, however, possible that others may exist for which analyses have not been carried out.

It is also possible that contaminants exist on the site but were not present at any of the exploratory hole locations.

5.GROUND CONDITIONS ENCOUNTERED

5.1 Soil Profile

The sequence of strata encountered beneath the site was:

- Topsoil/Made Ground
- Glaciofluvial deposits (orange/grey/brown sandy clay/silt)
- Weathered Mercia Mudstone (red brown clay/silt)

The depths of the various materials encountered in each of the exploratory holes are summarised in the following table. It is difficult, in places, to distinguish between Topsoil and Made Ground. For the purposes of this report surface layers are considered as Topsoil where there is no content (i.e. brick, concrete, clinker etc.) to suggest it is Made Ground. The Glaciofluvial Deposits and Weathered Mercia Mudstone are also similar and for the purposes of this report are referred to as 'Natural Clay'.

	Depth to Stratum (m)						
	TOPSOIL	MADE GROUND			NAT	URAL CLAY	
Hole	Sandy/ gravelly CLAY with rootlets	Sandy/gravelly CLAY with brick, concrete, occ. plastic, clinker, slag	Clayey sandy GRAVEL with brick, clinker, concrete, slag	Asphalt	Orange brown sandy silty CLAY	Reddish brown CLAY/SILT	GROUNDWATER
WS1		GL-0.30	0.30-0.90		0.90-4.50	4.50-5.00	1.10m
WS2	GL-0.25		0.25-1.00			1.00-5.00	1.30m
WS3		GL-1.30				1.30-5.00	1.30m
WS4		GL-0.30			0.30-4.20	4.20-5.00	1.40m
WS5	GL-0.15	0.15-0.90				0.90-5.00	1.40m
WS6	GL-0.20	0.20-0.65	0.65-0.85		0.85-3.50	3.50-5.00	1.50m
TP1	GL-0.20*				0.20-0.80	0.80-1.20	Damp at 1.20m
TP2		GL-0.20			0.20-1.30		1.30m
TP3		GL-0.90			0.90-1.50		Damp at 1.50m
TP4	GL-0.20		0.20-0.50*	0.50-0.70	0.70-1.40		1.40m
TP5		GL-0.90			0.90-1.20		1.20m
TP6	GL-0.15	0.15-0.80	0.80-0.95		0.90-1.50		1.50m
*geote	xtile at base						

Summary of Ground Conditions Encountered

5.2 Obstructions

Underground man-made obstructions were not encountered in any of the exploratory holes.

5.3 Groundwater

Groundwater was encountered in all the exploratory holes except TP1 and TP3 at depths of between 1.10m and 1.50m below existing ground level.

Subsequent monitoring of groundwater in standpipes indicated groundwater levels at depths ranging between 1.18m^(WS4) and 1.69m^(WS1) below existing ground level.

5.4 Land Gas

Results obtained during the initial monitoring visit on 16^{th} April 2021 indicated Methane (CH₄) levels = 0% by volume, Carbon Dioxide (CO₂) levels ranging from 0.1% to 1.2% by volume, and Oxygen (O₂) levels ranging from 18.7% to 19.9% by volume. Hydrogen Sulphide, Carbon Monoxide and hydrocarbon levels of 0ppm were recorded together with gas flow = 0l/hr and borehole pressure = 0Pa. Atmospheric pressure was recorded as 1033mb.

Results obtained during subsequent monitoring visits on 27^{th} April 2021 and 11^{th} May 2021 indicated Methane levels = 0% by volume, Carbon Dioxide levels ranging from 0.1% to 1.8% by volume, and Oxygen levels ranging from 18.9% to 20.0% by volume. Hydrogen Sulphide, Carbon Monoxide and hydrocarbon levels of 0ppm were recorded together with gas flow = 0l/hr and borehole pressure = 0Pa. Atmospheric pressure was recorded in the range 1005mb to 1009mb.

It should be noted that the concentrations and levels of mobile liquid and gaseous materials are likely to vary with time. The results obtained may therefore be representative of the conditions only at the time of sampling.

5.5 Visual / Olfactory Evidence of Contamination

No visual or olfactory evidence of contamination was observed on site or encountered in any of the exploratory holes during the investigation.

6. ENGINEERING PROPERTIES OF SOILS ENCOUNTERED

6.1 General

The following sections discuss the engineering and chemical properties of the strata encountered, based on results of in situ testing and laboratory testing obtained during this investigation.

				CLASSIFICATION CHEMICAL									
Location	Depth (mbgl)	Stratum*	Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	PSD Cobbles (%)	PSD Gravel (%)	PSD Sand (%)	PSD Silt (%)	PSD Clay (%)	pH Value	Water Soluble Sulphate (mg/l)
WS1	0.30	MGg					26	38	21	1	5		
WS1	1.00	GFD	19.7	47	17	30						7.76	20
WS1	2.00	GFD	23.5	35	16	19							
WS2	0.25	MGg					0	61	31	8	3		
WS2	1.00	WMM	23.0	36	16	20						8.31	<10
WS2	3.00	WMM	22.2	31	16	15							
WS3	1.30	WMM	21.5	42	16	26						7.97	<10
WS3	3.00	WMM	24.2	31	16	15							
WS4	1.00	GFD	24.2	47	17	30							
WS5	0.90	WMM	19.2	26	14	12	0	3	27	51	19	7.94	20
WS6	0.85	GFD	28.6	68	32	36						6.65	20
TP1	0.90	WMM	25.0	42	17	25							
TP3	1.20	GFD	21.6	39	18	21							
TP4	0.90	GFD	17.6	35	16	19							
TP6	0.80	MGg					0	35	41	24			
*MGg = M	*MGg = Made Ground (granular), GFD = Glaciofluvial Deposits, WMM = Weathered Mercia Mudstone												

Summary of Laboratory Geotechnical Test Results

6.2 Made Ground

Laboratory **particle size distribution** (PSD) tests suggest the samples of Made Ground tested are predominantly sand or gravel with varying amounts of cobbles and silt/clay.

A single **SPT N value** of 7 has been obtained in the cohesive Made Ground at 1.0m depth in WS3. This result suggests the Made Ground here is soft.

In situ hand shear vane tests have given results of **shear strength** in the range 50kN/m² to 62kN/m², suggesting the cohesive Made Ground is firm.

6.3 Natural Clay

Atterberg Limit tests have given values of **liquid limit** in the range 26% to 68% and **plastic limit** values in the range 16% to 32%, resulting in values of **plasticity index** in the range 12% to 30%. These results suggest the samples tested are clay of intermediate to high plasticity as shown on the Plasticity Chart included in the Appendices. For design purposes, a value of plasticity index = 27% is recommended, based on the upper quartile value of the results.

In accordance with NHBC Chapter 4.2 Building Near Trees⁽²⁰⁰³⁾ soils can be classified in terms of **volume change potential**, using the relationship:

 $I_{p}' = I_{p} x \frac{\% \text{ less than } 425 \mu m}{100\%}$

....where I_p' = modified plasticity index, I_p = plasticity index.

Based on the laboratory test results, the above relationship and Table 1 of NHBC Chapter 4.2, the samples of Glaciofluvial Deposits are shown to have **low to medium volume change potential**.

SPT N values range from 2 to 14, as can be seen from SPT v Depth Plot included in the Appendices. These values suggest the clay is very soft to firm.

In situ hand shear vane tests have given results of **shear strength** in the range 30kN/m² to 80kN/m², suggesting the clay is soft to stiff.

Shear strength may also be estimated from a correlation by Stroud and Butler⁽¹⁹⁷⁵⁾: for a clay with a plasticity index of 27%, $c_u = 4.8 \times SPT N$ value. A plot of strength v Depth is included in the Appendices, using both SPT correlated strengths and hand shear vane test results.

The following table summarises derived values of shear strength for preliminary design purposes, based on all the strength results.

Depth (m)	Range of Strength Values (kN/m²)	Design Strength Value* (kN/m²)			
1.00	14-60	19			
2.00	10-38	12			
3.00	14-34	16			
4.00	14-62	14			
5.00	14-67	48			
*based on lower quartile value of results					

Summary of Recommended Design Shear Strength Values

Effective stress strength parameters may also be obtained from correlations with plasticity index. For a plasticity index of 27%:

- BS8002⁽¹⁹⁹⁴⁾, Table 2 gives φ[´]crit ≈ 26⁰;
- Gibson⁽¹⁹⁵³⁾, gives $\phi_d = 27.2^{\circ}$.

Based on all the above, design values of $\phi' = 26^{\circ}$ and c' = 0kN/m² are recommended for the clay.

The **coefficient of volume compressibility**, m_v may also be estimated from a correlation by Stroud and Butler⁽¹⁹⁷⁵⁾: for a clay with a plasticity index of 27%, $m_v = 1 / (0.46 \times N \text{ value})$.

The following table summarises values of coefficient of volume compressibility, based on the above correlation.

Depth (m)	Range of N Values	Design N Value*	Coefficient of Volume Compressibility (m²/MN)	Comments			
1.00	3-8	4	0.54	High Compressibility			
2.00	2-8	3	0.72	High Compressibility			
3.00	2-7	3	0.72	High Compressibility			
4.00	1-13	3	0.72	High Compressibility			
5.00	3-14	10	0.22	Medium Compressibility			
*based o	*based on lower quartile value of results						

Recommended Design Coefficient of Volume Compressibility Values

Laboratory test have given values of **water soluble sulphate** in the range <10mg/l to 20mg/l, together with **pH Values** in the range 6.65 to 8.31.

6.4 Results of In Situ Testing

The results of in situ CBR tests are summarised below.

Location	Depth	CBR Value
Location	(mbgl)	(%)
	0.137-0.414	14
DCFUI	0.414-0.818	5.4
	0.130-0.330	22
DCFUZ	0.330-0.824	8.6
DCP03	0.127-0.659	20
	0.052-0.430	22
DCF04	0.430-0.623	54
	0.041-0.300	33
DCF05	0.300-0.360	66
	0.122-0.422	10
	0.422-0.792	17

In Situ CBR Test Results

Results of soakaway testing are summarised in the following table.

Location	Depth to base of pit (mbgl)	Soil Infiltration Rate* (m/s)				
TP1	1.20	1.81 X 10-6				
TP2	1.30	7.93 X 10 ⁻⁷				
TP3	1.50	2.64 X 10 ⁻⁶				
TP4	1.40	2.17 X 10 ⁻⁶				
TP5	1.20	4.20 X 10 ⁻⁶				
TP6	1.50	2.07 X 10-6				
*Results extrapolated from data						

In Situ Soakaway Test Results

7.GEOTECHNICAL ASSESSMENT

7.1 Proposed Development

The proposed development will comprise a new 2-storey school building with associated areas of soft landscaping and hardstanding and a new MUGA pitch. At the time of writing this report, anticipated structural loadings were not known.

7.2 Ground Conditions Encountered

The exploratory holes have encountered topsoil and variable Made Ground (up to 1.3m thickness) overlying generally soft becoming firm clay, proven to a maximum depth of 5.0m below existing ground level. Groundwater was encountered in all the exploratory holes except TP1 and TP3 at depths of between 1.10m and 1.50m below existing ground level. Subsequent monitoring of groundwater in standpipes indicated groundwater levels at depths ranging between 1.18m^(WS4) and 1.69m^(WS1) below existing ground level. Significant levels of land gas have not been encountered.

7.3 Foundation Considerations

The main consideration on site is the significant thickness of poor quality (low strength/high compressibility clays) beneath the site, which will have an impact of foundation design.

The following sections discuss conventional shallow depth foundations and alternative foundation options, should allowable bearing pressures be too low and anticipated settlements too high.

7.3.1 Shallow Depth Spread Foundations

Based on the ground conditions encountered conventional shallow depth strip/pad foundations could be considered, taken down into the natural clay, subject to review of anticipated structural loadings and tolerance of the structure to settlement.

Foundations should be taken down a minimum 1m depth and placed in the natural clay. If any Made Ground or particularly soft or loose material is encountered at foundation level this should either be excavated and replaced with suitable granular fill, or the foundation extended to suitable stratum.

The following table summarises allowable bearing pressures for strip and pad foundations at depths of between 1.0m and 2.5m, placed in natural clay. The bearing pressures have been calculated based on Hansen's method⁽¹⁹⁷⁸⁾, and using a factor of safety of 3 against bearing capacity failure. Groundwater is assumed to be at foundation level.

		-			
Foundation Depth (mbgl)	Founding Stratum	Design Value (Section 6)	Foundation Type	Foundation Size	Allowable Bearing Pressure
		401-11/2	Ctrip	0.4m	50kN/m ²
1.0	Clay		Strip	0.9m	45kN/m ²
1.0	Clay	Cu-19KIN/III2	Ded	1m x 1m	55kN/m ²
			Fau	2m x 2m	50kN/m ²
	Clay	cu=19kN/m²	Ctrip	0.4m	55kN/m ²
1.5			Suip	0.9m	50kN/m ²
			Ded	1m x 1m	55kN/m ²
			Fau	2m x 2m	50kN/m ²
	Clay	cu=12kN/m²	Ctrip	0.4m	35kN/m ²
0.0			Suip	0.9m	35kN/m ²
2.0			Ded	1m x 1m	40kN/m ²
			Fau	2m x 2m	40kN/m ²
2.5	Clay	c _u =12kN/m ²	Ctrip	0.4m	40kN/m ²
			Strip	0.9m	40kN/m ²
			Ded	1m x 1m	40kN/m ²
			гau	2m x 2m	40kN/m ²

Summary of Allowable Bearing Pressures

The following table summarises anticipated foundation settlements, based on strip/pad foundations being placed in the natural clay. For the purposes of the analyses, foundation loadings are taken as the allowable bearing pressure above, to give a worse-case scenario and the depth of influence of the foundation taken as 1.5 times the foundation width.

Foundation	Foundation	Foundation	Foundation	Se	ttlement (I	mm)
Depth	Type	Size Loading		At	At	Average
(mbgl)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0120	Locating	Corner	Centre	/ Workigo
	Strip	0.4m	50kN/m ²	-	-	15-20
10	Suip	0.9m	45kN/m ²	-	-	30-35
1.0	Pad	1m x 1m	55kN/m ²	40-45	10-15	30-35
	Fau	2m x 2m	50kN/m ²	65-70	15-20	50-55
	Strip	0.4m	55kN/m ²	-	-	20-25
15	Surp	0.9m	50kN/m ²	-	-	30-35
1.0	Pad	1m x 1m	55kN/m ²	45-50	10-15	30-35
		2m x 2m	50kN/m ²	65-70	15-20	50-55
	Strip	0.4m	35kN/m ²	-	-	10-15
2.0		0.9m	35kN/m ²	-	-	20-25
2.0	Pad	1m x 1m	40kN/m ²	30-35	5-10	25-30
		2m x 2m	40kN/m ²	50-55	10-15	35-40
2.5	Strip	0.4m	40kN/m ²	-	-	15-20
	Strip	0.9m	40kN/m ²	-	-	20-25
	Ded	1m x 1m	40kN/m ²	30-35	5-10	25-30
	Pau	2m x 2m	40kN/m ²	45-50	10-15	35-40

Summary of Anticipated Settlements

Settlements for other bearing pressures may be estimated on a pro-rata basis, but bearing pressures should not exceed the allowable net bearing pressure based on ultimate bearing capacity.

If trees are to be removed or planted as part of the redevelopment, in order to avoid possible excessive settlement due to water removal by trees during dry periods or ground heave due to tree removal, the recommendations of the National House Building Council Practice Standard "Building Near Trees", although not strictly applicable, should be closely followed. In this context the clays beneath the site should be assumed as having a low volume change potential.

All foundation excavations will need careful inspection by a suitably qualified engineer or inspector to ensure the founding strata is suitable and uniform along the length of the foundation, and capable of taking the anticipated structural loadings.

Floor slabs should be designed as suspended where Made Ground is >600mm thickness or the slab is within the zone of influence of a tree. Floor slabs may be designed as ground bearing where Made Ground is excavated and replaced with a suitable granular fill and the slab is not located within the zone of influence of a tree.

From the above tables it can be seen the allowable bearing pressures are low and in some cases settlement high. Should these be unacceptable for the proposed building

alternative foundation options should be considered, and are discussed in the following sections.

7.3.2 <u>Piles</u>

Piled foundations could be considered, however additional boreholes will be required to investigate depth and nature of soils and bedrock at depth beneath the site.

The proposed development may be founded on a system of ground beams spanning onto piles taken down into suitable strata such as bedrock.

A variety of pile types may be used, including bored and continuous flight auger (CFA) piles. Driven piles may be suitable, subject to environmental and noise/vibration constraints.

Because of the various advantages and limitations of each pile type, and the cost implications, advice should be sought from specialist piling contractors to determine the most suitable and cost-effective type. They should also be able to give recommended pile diameters and depths and likely pile capacities, with guaranteed performance. It is recommended a pile test be carried out to confirm pile capacities. In assessing the pile capacities, contractors should make an allowance for the effects of negative skin friction, particularly in the made ground and soft clays.

There may be differential settlement between piled structures and the surrounding ground level. Provision should, therefore, be made to make up ground levels at threshold positions, loading bays, vehicle access doorways, etc. Alternatively, these materials should be removed and replaced in a controlled manner by suitable existing materials or imported engineered fill.

It is essential the advice of a specialist piling contractor is sought and that positive assurances are provided by the piling contractor that their proprietary system is capable of providing the required working loads in the ground conditions encountered.

Floor slabs should be designed as suspended if the piled solution is used.

7.3.3 Ground Improvement

Ground treatment (e.g. vibro displacement) may be an option, subject to environmental and noise/vibration constraints and ability of the near surface soils to provide sufficient lateral restraint.

For example, vibro stone columns are often used to solve a wide range of static, dynamic and seismic foundation problems by using powerful depth vibrators to densify soils of form stone columns that compact or reinforce soils in situ. Vibro systems can be used to treat granular deposits, fills, made ground and soft clays/silts.

Soils treated by vibro could offer an allowable bearing pressure in the range 100kN/m² to 200kN/m², depending on column spacings and ground encountered.

Once the treatment has been carried out, spread foundations may be adopted across the site, and designed to the loadings given above. Providing that any imported fill material between the tops of the columns and the underside of the floor slab is placed in a controlled manner, floor slabs may be ground bearing. Positive assurances should be sought from an experienced specialist contractor that the proprietary system proposed is capable of providing the required working loads in the ground conditions encountered, with a guarantee on maximum settlement for both footings and floor slabs.

7.3.4 Controlled Modulus Columns

Where traditional ground improvement techniques may not be suitable due to either poor soil strength, high loadings or tight settlement criteria, controlled modulus columns (CMCs) provide a fast and economical ground improvement alternative to piling.

The technique installs low strength concrete columns, 280mm to 500mm in diameter, up to 50m in depth using our displacement tools.

The benefits are:

- Ground bearing foundation solution utilising a distribution mattress.
- The rig working platform can be used as part of the distribution mattress.
- No breaking down of CMCs. Trimming is undertaken while the CMCs are still wet.
- The vibration free displacement process creates minimal spoil.

The technique can be used for a wide range of structures including heavily loaded commercial/industrial floor slabs, road and rail embankments, silos, tanks and wind turbines and residential buildings traditionally founded on driven piles.

Positive assurances should be sought from an experienced specialist contractor that the proprietary system proposed is capable of providing the required working loads in the ground conditions encountered, with a guarantee on maximum settlement for both footings and floor slabs. Foundations formed on CMCs should be suitably reinforced to mitigate minor movement between columns and the surrounding ground.

7.3.5 <u>Rafts</u>

Alternatively thickened-edge raft foundations could be considered, placed at shallow depth in the clay and sufficiently reinforced to act as a rigid structure. For guidance a raft 10m x 5m placed at 0.6m depth in soft clay could be designed to an allowable bearing pressure of 25kN/m². If rafts are to be considered additional in situ testing (plate bearing tests) should be carried out to confirm loadings at shallow depth and associated settlements.

7.4 Pavement Design

In situ CBR tests have given variable results of CBR in the rage 5% to 667%, within 0.8m of the existing site surface.

Based on the types of ground encountered, and the above results, it is recommended for preliminary design purposes a CBR value = 2% is adopted for all cohesive materials and CBR = 5% adopted for granular material.

Consideration should be given to the potential differing ground conditions near surface, which could cause pavements to be partly constructed on clay or variable made ground. In this context a flexible pavement design may be required.

Consideration should also be given to the use of geotextiles to allow reduction of capping thickness. For examples biaxial geogrids such as Tensar SSLA20 and SSLA30 are often used to reduce capping thickness. The advice of a suitable contractor should be sought as to the most appropriate type of geotextile to use in the ground conditions encountered at this site. For guidance, the following table gives a comparison of granular layer thickness with and without the use of a geotextile, in accordance with the requirement of HA25/94 Part 2.

	Unreinforced			Reinforced with Tensar Geogrid					
CBR	Sub-base	Capping	Total	Sub-base	Canning	No. of	Total	Thickness	
	000-083e	Capping	TOTAL	000-0036	Capping	grids	TOLAT	saving	
0.5%	Design not suitable			200mm	400mm	2	600mm	-	
1.0%	150mm	600mm	750mm	400mm	0	1	400mm	350mm	
1.5%	150mm	600mm	750mm	310mm	0	1	310mm	440mm	
2.0%	150mm	600mm	750mm	260mm	0	1	260mm	490mm	
3.0%	150mm	350mm	500mm	210mm	0	1	210mm	290mm	
4.0%	150mm	300mm	450mm	175mm	0	1	175mm	275mm	
5.0%	150mm	250mm	400mm	160mm	0	1	160mm	240mm	
These figures are suitable for light access roads and car parks, based on 1000 standard axles. For heavier loaded pavements									
the advice of specialist contractor should be sought.									

It should be noted the type of construction will depend on proposed finished pavement levels across the site and it is recommended the pavement design is reviewed once these levels are known. In this context, it is essential further in situ CBR testing is carried out once formation levels are known to confirm design CBR values.

All formation excavations should be examined by a suitably experienced engineer or inspector to check for soft or unsuitable material, which should be removed and replaced with compacted granular fill. Also, to ensure good compaction and remove unevenness, the formation should be compacted with equipment suitable for use in the ground conditions encountered. Careful inspection of this work will also help identify any soft spots at or just below formation level.

7.5 Chemical Attack on Buried Concrete

Chemical tests (see Appendices) show low levels of water soluble sulphates and near neutral to slightly alkaline conditions in the natural clays. Based on these conditions, it is recommended that for foundations in natural ground the Design Sulphate Class for the site, as defined in BRE Special Digest 1⁽²⁰⁰⁵⁾, be taken as DS-1, and the Aggressive Chemical Environment for Concrete (ACEC) site classification be taken as AC-1s.

For any ground-bearing floor slabs and shallow buried concrete within the made ground, the Design Sulphate Class may be taken as DS-2 and the ACEC site classification as AC-1s. The recommendations of BRE Special Digest 1 should be followed for concrete foundations and ground bearing floor slabs.

7.6 Suitability of Excavated Materials

Acceptability criteria and testing, and methods of compaction/placement will depend on the type of contract and specification used for the construction of the proposed development and it is recommended that earthworks specifications are reviewed by a suitably qualified engineer, once these have been prepared by the relevant parties.

For preliminary design purposes the classification testing carried out in this investigation may be used to generate acceptability limits for the fill material.

The suitability of excavated materials for re-use across the site is discussed in the following sections:

7.6.1 Granular Made Ground

Granular Made Ground could be suitable for re-use as structural fill, providing it is not contaminated and does not contain excessive amounts of clay and providing moisture contents are controlled during placement. The control of moisture contents will be important as the cohesive content of this stratum is likely to be sensitive to moisture content changes.

7.6.2 Cohesive Made Ground / Natural Clay

The cohesive Made Ground and soft near surface natural clay are unlikely to be suitable for re-use as fill, and should be used for landscaping purposes, providing they are not contaminated.

7.7 Temporary Works

Formations are likely to be susceptible to damage both by weather and trafficking, and should be protected immediately on exposure, particularly in areas where construction plant will access the site.

Excavations in Made Ground and soft near surface soils are likely to be unstable and should be battered back to an angle of 1 in 1, or a system of close sheeting and shoring adopted to ensure stability, and in particular where personnel are required to enter excavations.

All excavations should be adequately supported where personnel are required to enter.

Groundwater seepages could be encountered near surface within excavations, particularly during the wetter months of the year. If required intermittent pumping of excavations from a suitable located sump should be adequate at this site to keep excavations dry.

All materials on site should be capable of being excavated using conventional excavating machinery, with the exception of existing hardstanding, which will require the use of pneumatic breakers.

7.8 Drainage

Results of soakaway tests have given very low soil infiltration rates. Based on the ground conditions encountered and these results, soakaway drainage may be suitable on site, depending on inflow and outflow volumes of surface water drainage.

Careful consideration will also be required to the impact of shallow water table across the site which could restrict depth of soakaway construction.

8. ENVIRONMENTAL ASSESSMENT

8.1 Introduction

In accordance with current best practice, the assessment of potentially contaminated sites is normally carried out by means of a risk assessment, based on a conceptual model, which examines possible sources of contamination, potential receptors, and likely links between the two. For contamination to be a hazard, it must be demonstrated that there is an identifiable source of contamination (either inside or outside the site), potential receptors that may be at risk (occupiers of the site, for example, or the environment in general), and that there are also potential pathways through which the former may affect the latter.

Potential sources of contamination can be determined from the results of the laboratory tests that have been carried out on the soil samples. Other potential sources may be evident from the information on the history of the site and its environs. Contaminants are only a hazard if they are present in suitably high concentrations.

8.2 Conceptual Model

8.2.1 Contaminant Sources

Based on the current and historical uses of the site and its surroundings, and the findings of the investigation, it is concluded that the following contaminant sources should be considered:

<u>Historical/Current Site Sources</u>: The site has historically been undeveloped or used as a sports pitch associated with Cowbridge Comprehensive School, which is unlikely to be a potential source of contamination.

<u>Materials present on the site</u>: No visual or olfactory evidence of contamination was observed on site or encountered in any of the exploratory holes during the investigation, however given presence of made ground encountered beneath parts of the site, this should be considered a potential source of contamination.

<u>Asbestos</u>: Asbestos was not encountered on site during the fieldwork, or within any of the samples subsequently tested.

<u>**Ground Water:</u>** Groundwater was encountered in all the exploratory holes except TP1 and TP3 at depths of between 1.10m and 1.50m below existing ground level. Subsequent monitoring of groundwater in standpipes indicated groundwater levels at depths ranging between 1.18m^(WS4) and 1.69m^(WS1) below existing ground level.</u>

Land Gas: Another potential source of contamination is land gas. Results obtained during monitoring visits indicated Methane levels = 0% by volume, Carbon Dioxide levels ranging from 0.1% to 1.8% by volume, and Oxygen levels ranging from 18.7% to 20.0% by volume. Hydrogen Sulphide, Carbon Monoxide and hydrocarbon levels of 0ppm were recorded together with gas flow = 0l/hr and borehole pressure = 0Pa. Atmospheric pressure was recorded in the range 1005mb to 1033mb.

<u>Contamination arising from external sources</u>: Based on current site usage, it is unlikely that areas near to the site are considered likely to contain elevated concentrations of some contaminants, which might affect the site itself.

8.2.2 Contaminant Pathways:

Contaminants can reach potential receptors through various routes. The following are considered to be applicable to this site:

- **Ingestion:** Some contaminants can be harmful if ingested directly, either after handling contaminated soils, or due to eating plants grown in such soils that may not be thoroughly clean.
- Absorption through Plants: Other contaminants can be taken up by plants grown in contaminated soils, and ingested by anybody eating such plants.
- Leachate: Soluble fractions of some contaminants can leach into the ground, contaminating groundwater.
- Services / Drains: Contaminants in solution can be transported from one part of the site to another, or from outside the site to within the site, through old drains, or other service trenches which may be present.

8.2.3 Contaminant Receptors:

The following potential receptors are considered to be applicable to this site:

- **Future Site Occupants:** Future site occupants could be at risk from the effects of any contaminants in the soil and groundwater, and also from land gas.
- **Construction Workers:** The personnel involved in the construction of the proposed development are also at risk.
- **Construction Materials:** materials used in construction could be at risk from contamination.
- **Groundwater / River Water:** As well as being a potential source of contamination, the groundwater also needs to be considered as a potential receptor of further contamination.
- **Vegetation:** New planting on the site could be at risk from contamination.

8.3 Soil Risk Assessment

8.3.1 Risk of Soil Contamination - During Development

To assess the risk of soil contamination to construction and ground workers during development, guidelines from the HSE Document *'Protection of workers and the general public during development of contaminated land'*⁽¹⁹⁹¹⁾ are used. The document assesses soil contamination test results and classifies the site as being uncontaminated or contaminated with varying degrees of contamination from 'slight' to 'unusually heavy'.

The guideline values and laboratory test results are summarised in the following table:

Summary of guideline values for protection of workers and the general public

		Т	ypical Values* for				
Contaminant	Uncontaminated Soils	Slight Contamination	Contaminated	Heavy Contamination	Unusually Heavy Contamination	Test Results	Class
	Class A	Class B	Class C	Class D	Class E		
pH (acid)	6-7	5-6	4-5	2-4	<2		
pH (alkaline)	7 - 8	8 - 9	9 - 10	10 - 12	12	7.14- 9.02	A-C
Arsenic	0 - 30	30 - 50	50 - 100	100 - 500	500	2-5	Α
Cadmium	0 - 1	1 - 3	3 - 10	10 - 50	50	<0.5-0.9	Α
Chromium	0 - 100	100 - 200	200 - 500	500 - 2500	2500	12-25	Α
Copper	0 - 100	100 - 200	200 - 500	500 - 2500	2500	9-17	Α
Lead	0 - 500	500 - 1000	1000 - 2000	2000 – 1%	1.0%	18-89	Α
Mercury	0 - 1	1 - 3	3 - 10	10 - 50	50	<0.17- 0.37	А
Nickel	0 - 20	20 - 50	50 - 200	200 - 1000	1000	13-24	A-B
Zinc	0 - 250	250 - 500	500 - 1000	1000 - 5000	5000	38-100	Α
Boron	0 - 2	2 - 5	5 - 50	50 - 250	250	<1.0-1.1	Α
Selenium	0 - 1	1 - 3	3 - 10	10 - 50	50	<1	Α
Beryllium	0 - 5	5 - 10	10 - 20	20 - 50	50	<0.5-0.8	Α
Vanadium	0 - 100	100 - 200	200 - 500	500 - 2500	2500	17-31	Α
Sulphate	0 - 2000	2000 - 5000	5000 – 1%	1% - 5%	5.05%	<200- 800	А
Sulphur	0 - 100	100 - 500	500 - 1000	1000 - 5000	5000	<5	Α
Sulphide	0 - 10	10 - 20	20 - 100	100 - 500	500	<5-100	Α
Cyanide (free)	0 - 1	1 - 5	5 - 50	50 - 100	100	<1	А
Thiocyanate	0 - 10	10 - 50	50 - 100	100 - 500	2500	<5-9	Α
Coal Tar	0-500	500-1000	1000-2000	2000-1.0%	1.0%	<10-125	Α
Phenol	0 - 2	2 - 5	5 - 50	50 - 250	250	<0.2	A

during development of contaminated land

Based on the above results there is a generally low potential risk from soil contamination to construction workers, ground workers and members of the public, and appropriate measures, such as PPE, site health plans, appropriate disposal of material arisings will mitigate any risk.

8.3.2 Risk of Soil Contamination – After Development

As part of the contamination assessment, the chemical results obtained by CJA have been screened against accepted compliance criteria, namely:

- Defra C4SL Health Criteria Values (March 2014), where available; and
- CJA Tier 1 assessment values based on LQM/CIEH Suitable 4 Use Levels⁽²⁰¹⁵⁾ (S4ULs).

The Land Quality Management (LQM)/Chartered Institute of Environmental Health (CIEH) 'Suitable 4 Use Levels' (S4ULs) have been derived for soil contaminants for which there are no C4SLs, and have been derived in accordance with UK legislation,

national and Environment Agency Policy and using the Environment Agency's tools and available guidance.

The S4ULs replace the previous LQM/CIEH Generic Assessment Criteria (GAC) published in 2009. The assessment criteria have been updated in line with developments in UK human health risk assessment, in particular the additional land uses and exposure assumptions presented in Defra's C4SL guidance. For each substance, S4ULs have been derived for six generic land uses (including the two Public Open Space land uses defined in C4SL guidance) and a range of Soil Organic Matter contents (organic contaminants only).

In March 2014 Defra published Category 4 Screening Levels (C4SLs) for assessment of land affected by contamination. C4SLs are intended for use in determining whether land is 'clearly not contaminated' as defined by the revised Part 2A Statutory Guidance, i.e. Category 4 is where there is no risk or the level of risk to human health is acceptably low. The framework developed presents a departure from the conventional approach of defining 'minimal risk' and the derivation of C4SLs has involved the development of a new toxicological criterion, the 'low level of toxicological concern' (LLTC), alongside modifications to the exposure modelling previously used to determine similar generic assessment criteria.

The S4ULs and C4SLs are intended to be used as generic assessment criteria and can be used in the preliminary evaluation of the risk to human health from long-term exposure to chemicals in soil. They represent values, which indicate to an assessor that soil concentrations above this level might present risk to the health of site-users and that further assessment, quantitative risk assessment, site investigation or remediation may be required.

The use of these reference values for initial screening purposes does not imply that they are categoric indicators of whether contamination conditions are significant, this being subject to a more detailed risk assessment.

In the case of possible receptors, one of the most significant factors is the proposed future use of the site (as some potential uses are much less sensitive to the presence of contamination than others).

At the time of writing this report the proposed development was a new education facility with associated buildings, sports pitches and areas of hardstanding and grassed playing fields.

Assessment criteria are based on factors such as site users and likely length of exposure to contamination. Commercial guideline criteria are derived using the age criteria of over 18 for 8.3 hours per day. Residential based criteria considers exposures to children (who are more sensitive to contamination) over more appropriate time periods (up to 23 hours per day for children under 4). Based on the type of proposed development it is likely there will be mixed users (adults and children) for varying amounts of time. Therefore, for the purposes of this report the following sections compare the results of contamination analyses to residential end use (without home grown produce) and public open spaces criteria (where available) as specified by Defra/LQM/CIEH.

The comparison of results is summarised in the following tables.

	C4SL (mg/kg)*			No. of Samples with Exceedences		
Determinand	Residential without home grown produce	Min. (mg/kg)	Max. (mg/kg)			
Arsenic	40	2	5	0		
Benzene	3.3	<0.01	<0.01	0		
Benzo(a)pyrene	5.3	<0.04	0.18	0		
Cadmium	149	<0.5	0.9	0		
Chromium VI	21	<1	<1	0		
Lead	310	18	89	0		
*Minimal risk Health Criteria Values						

Soil Results Comparison with Defra C4SL HCV/LLTC Values

The samples have shown contaminants at levels below the recommended C4SL values.

The following contaminants were not assessed with respect to risks posed to Human Health as they are not generally considered to represent a significant risk to Human Health (CLR 8); sulphate and sulphide.

For contaminants not covered by the Defra C4SLs, reference is made to the Suitable for Use Levels (S4ULs) derived by The Land Quality Management Ltd & Chartered Institute of Environmental Health⁽²⁰¹⁵⁾, and summarised in the following table.

Soil Results Comparison with LQM/CIEH S4UL

	Suita									
Determinand	Residential without homegrown produce (1)	Public Open Space Residential (2)	Public Open Space Parks (3)	No. of Samples	Min. (mg/kg)	Max. (mg/kg)	No of Exceedences			
Metals										
Beryllium	1.7	2.2	63	7	<0.5	0.8	0			
Boron	11000	21000	46000	7	<1.0	1.1	0			
Chromium	910	1500	33000	7	12	25	0			
Copper	7100	12000	44000	7	9	17	0			
Mercury	1.2	16	30	7	<0.17	0.37	0			
Nickel	180	230	3400	7	13	24	0			
Selenium	430	1100	1800	7	<1	<1	0			
Vanadium	1200	2000	5000	7	17	31	0			
Zinc	4000	81000	170000	7	38	100	0			
Petroleum Hydrocarbons			•							
Toluene	880	56000	87000	7	<0.01	<0.01	0			
Ethylbenzene	83	24000	17000	7	<0.01	<0.01	0			
o-xylenes	88	41000	17000	7	<0.01	0.01	0			
m-xylenes	82	41000	17000	7	<0.01	0.04	0			
p-xylenes	79	41000	17000	7	<0.01	0.04	0			
Aliphatic EC 5-6	42	570000	95000	7	<0.01	<0.01	0			
Aliphatic EC >6-8	100	600000	150000	7	<0.01	<0.01	0			
Aliphatic EC >8-10	27	13000	14000	7	<1	<1	0			
Aliphatic EC >10-12	130	13000	21000	7	<1	<1	0			
Aliphatic EC >12-16	1100	13000	25000	7	3	1	0			
Aliphatic EC >16-35	65000	250000	450000	7	2	75	0			
Aromatic EC 5-7	370	56000	76000	7	< 0.01	< 0.01	0			
Aromatic EC >7-8	860	56000	870000	7	< 0.01	< 0.01	0			
Aromatic EC >8-10	47	5000	7200	7	<1	1	0			
Aromatic EC >10-12	250	5000	9200	7	<1	<1	0			
Aromatic EC>12-16	1800	5100	10000	7	<1	3	0			
Aromatic EC>16-21	1900	3800	7600	7	<1	8	0			
Aromatic EC>21-35	1900	3800	7800	7	3	42	0			
Polycyclic Aromatic Hydrocarbol	ns	(000	1000	-		0.00	<u>^</u>			
Naphthalene	2.3	4900	1200	/	< 0.03	< 0.03	0			
Acenaphthylene	2900	15000	29000	/	< 0.01	< 0.01	0			
Acenaphthene	3000	15000	29000	/	< 0.01	0.04	0			
Fluorene	2800	9900	20000	/	< 0.01	0.04	0			
Phenanthrene	1300	3100	6200	/	< 0.03	0.31	0			
Anthracene	31000	74000	150000	7	<0.02	0.08	0			
Fluorantnene	1500	3100	6300	7	<0.08	0.54	0			
Pyrene Depertore	3700	7400	15000	7	< 0.07	0.38	0			
	11	29	49	1	<0.04	0.30	0			
Denze/b)fluerenthene	30	٦ <i>١</i> ٦1	90	1	<0.00	0.30	0			
	3.9 110	1.1	13	1	<0.05	0.20	0			
	110	190	3/0	1	<u> \0.07 </u>	0.09	0			
	40	02	100	1	<0.03	0.10	0			
	260	0.07	1.1	1	<0.04	<u> <u> </u> <u></u></u>	0			
Phonole	300	040	1400		\0.00	0.00	0			
Phenol	750	760	760	7	<0.2	<0.2	0			
	150	100	100	1	~U.Z	-v.z	0			

The samples have shown most contaminants at levels below the recommended S4UL values.

8.4 Groundwater & Surface Water Risk Assessment

Based on the ground and groundwater conditions encountered and low levels of soil contamination encountered it is considered the risk to groundwater and surface water is low.

8.5 Land Gas Risk Assessment

The potential risk associated with gases being generated in the ground (whether from natural or man-made sources) depends on the concentrations of gas and its flow rate to the surface. These factors are assessed by monitoring of the gas installations in the boreholes. The variable nature of gas generation and the effect of barometric pressure on gas flow, means that the volume of gas potentially reaching the ground surface is normally inconsistent over time.

For the assessment of sites, in terms of the potential for ground gas to present a hazard, the risk based methodology detailed in CIRIA Report C665⁽²⁰⁰⁷⁾ is used. This is a risk based approach that is designed to allow quick and easy design of gas protection for development by comparing the measured gas emission rates to Characteristic Situations, based on risk based Gas Screening Values (GSVs). The GSVs equate to the borehole gas volume flow rate as defined by Wilson and Card⁽¹⁹⁹⁹⁾ as the borehole flow rate multiplied by the concentration in the air stream of the particular gas being considered.

For the purposes of this evaluation the calculations will be carried out for both carbon dioxide and methane encountered in the boreholes on site, and a peak flow rate of 0.2l/hr assumed to give a worst case scenario adopted in order to establish the appropriate protection measures, as follows:

- Carbon dioxide: maximum flow rate = 0.2l/hr, max concentration = 1.8%
- Methane: maximum flow rate = 0.2l/hr, max concentration = 0.0%.

Based on the above figures, the GSV is calculated as:

- Carbon dioxide: GSV = 0.2 x 0.018 = 0.0036l/hr
- Methane: GSV = 0.2 x 0.03 = 0.0l/hr.

The results suggest the site can be given a Characteristic Situation of (1), i.e. 'very low risk', in accordance with the table below.

Characteristic Situation (CIRIA Report 149)	Risk Classification	GSV (CH₄ or CO₂) (I/hr)	Additional Factors	Typical Source of Generation
1	Very Low Risk	<0.07	Typically methane ≤1%v/v and/or carbon dioxide ≤5% v/v. Otherwise consider increase to Situation 2.	Natural Soils with low organic content. "Typical" Made Ground.
2	Low Risk	<0.7	Borehole flow rate not to exceed 70l/hr. Otherwise increase to Situation 3.	Natural soil, high peat/organic content. "Typical" Made Ground.
3	Moderate Risk	<3.5		Old landfill, inert waste, mineworking flooded.
4	Moderate to High Risk	<15	Quantitative risk assessment required to evaluate scope of measures required.	Mineworking susceptible to flooding, completed landfill (WMP 26B criteria)
5	High Risk	<70		Mineworking unflooded inactive with shallow workings near surface.
6	Very High Risk	>70		Recent landfill site.

Modified Wilson & Card Classification (CIRIA Report 659)

According to Table 8.6 of CIRIA Report 665, no special precautions will be required for Characteristic Situation 1.

8.6 Risk from Asbestos

Asbestos has not been encountered in any of the exploratory holes or in any of the samples tested. It is therefore considered the risk from asbestos being present in the ground is low.

8.7 Risk to Buried Services

It is considered that, due to the low levels of contamination on the site, standard materials are likely to be appropriate for new water pipes. Further advice should be sought from the local water company.

Previous guidance on buried water pipes was contained in Water Regulations Advisory Scheme (WRAS) Guidance Note No. 9-04-03⁽²⁰⁰²⁾, however this has been superseded by the UK Water Industry Research Report 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' Ref 10/WM/03/21 (January 2011).

8.8 Risk to Vegetation/Planting

Elevated levels of boron, copper, nickel and zinc, which are phytotoxic and harmful to plants, have not been encountered. It is therefore considered the risk to new planting is low.

8.9 Site Risk Assessment

The following table presents an outline summary of the contamination assessment discussed above.

Description of Receptor or Source	Risk rating
Health and safety of workers during development	Low
Current and future site users and third parties	Low
Risk to groundwater	Low
Risk to surface waters	Low
On site and off site migration of land gasses	Low
Presence of Asbestos in Made Ground	Low
Risk to Buried Services	Low
Risk to New Planting and Vegetation	Low
OVERALL GROUND CONTAMINATION RISK RATING	Low

Contamination Assessment Summary

8.10 Discussion and Conclusions

The possible actions considered appropriate for the proposed development, together with other precautionary measures, are given below:

8.10.1 Contaminated Soils

Based on the laboratory test results there is a low potential risk from soil contamination to construction workers and groundworkers during ground works and appropriate measures such as PPE, site health plans and appropriate disposal of material arisings will mitigate any risk. The groundworks contractor will be required to provide a Soil Management Plan, including methods of dealing with any unanticipated contamination encountered during the ground works.

As discussed in the above sections, the contamination tests indicate generally low concentrations of the potential contaminants. It is therefore considered that, based on the information available, remedial action should not generally be required at this site.

CJAssociates

Nevertheless, the presence of higher levels of contamination on areas of the site not covered by the exploratory holes should not be discounted and additional spot checks are recommended, particularly in areas of proposed soft landscaping.

Should any elevated levels of contamination be found in such areas, remedial measures, such as the replacement of the upper zone of contaminated soil with a suitable thickness of clean soil, may need to be undertaken.

8.10.2 Contaminated Groundwater

Due to the low levels of contamination found at the site, it is not considered likely that there would be a hazard to the groundwater beneath the site, and no remedial action should be necessary.

8.10.3 Land Gas

Based on the results of monitoring land gas protection measures will not be required for new buildings.

8.10.4 Waste Disposal

Soils excavated from the site should be disposed of at a suitable site registered to take the levels of contamination encountered, or may possibly be used as general fill at this or other sites. If reuse is considered, however, further testing may be required.

8.10.5 Site Personnel

As with all construction sites, personnel working on the site during the construction period should be encouraged to maintain a high standard of personal hygiene and on site washing facilities should be available.

8.10.6 Other Matters

Due diligence is required during the construction period, and should any further evidence of contamination be found, appropriate investigation and / or action should be taken. The significance of any contamination not discovered by this investigation is outside the scope of this report.

It is emphasised that only a small number of tests for contamination have been carried out, and that the possibility of further contamination existing elsewhere on the site cannot be ruled out. CJA does not accept any liability for contamination.

9. LIST OF REFERENCES

Institution of Civil Engineers, Site Investigation Steering Group, Site investigation in construction series, Part 3: Specification for Ground Investigation, Thomas Telford Ltd, 1993.

British Standards Institute, BS 5930: Code of Practice for Site Investigations, 2015.

BS EN 14688 - Geotechnical Investigation and testing – Identification and classification of soil Part 1 Identification and description, 2002.

BS EN 14688 - Geotechnical Investigation and testing – Identification and classification of soil Part 2 Principals for a classification, 2004.

BS EN 14689 - Geotechnical Investigation and testing – Identification and classification of rock Part 1 Identification and description, 2003

BS EN ISO 22476 – Geotechnical investigation and testing – Field testing, 2005

British Standards Institute, BS 1377: British Standard Methods of Test for Soils for Civil Engineering Purposes, Parts 1 - 8, 1990.

Carter and Bentley, Correlations of Soil Properties, Pentech Press, 1991.

Geological Society Engineering Geology Special Publication No. 21 *Clay Materials used in Construction*, Reeves et al 2006.

BS8004:1986, British Standard Code of Practice for Foundations, BSI.

BS EN1997-1:2004 Eurocode 7 : Geotechnical Design, Part 1 General Rules

BS6031:2009, Code of Practice for Earthworks, BSI

Stroud and Butler, *The Standard Penetration Test and the Engineering Properties of Glacial Materials*, 1975 Conf. of the Midlands Geotechnical Society.

Gibson, *Experimental Determination of the True Cohesion and True Angle of Internal Friction in Clays*, Proc. of the Third Int. Conf. on Soil Mechanics and Foundation Engineering, Zurich, 1953.

Tomlinson MJ Foundation Design and Construction, 7th Edition 2001

Building Research Establishment, Special Digest 1, *Concrete in Aggressive Ground*, Department of Trade and Industry, 2005.

Hansen, *A General Formula for Bearing Capacity*, Danish Geotechnical Institute Bulletin No. 11, 1961. Also Danish Geotechnical Institute Bulletin No. 28, 1968; and Code of Practice for Foundation Engineering, Danish Geotechnical Institute Bulletin No. 32, 1978.

Tomlinson, *"Pile design and construction practice"*, Fourth Edition, 1994, E. and F. N. Spon.

Building Research Establishment (BRE), Digest 365: Soakaway Design, 2007.

Kleyn and Van Heerd, *Using DCP Soundings to Optimize Pavement Rehabilitation*, Paper submitted for Annual Transportation Convention, Johannesburg. Report LS/83 Materials Branch, Transvaal Roads Department, Pretoria, South Africa, 1983.

Wilson SA and Card GB, *Reliability and Risk in Gas Protection Design*, Ground Engineering (1999).

Ciria Report C665 Assessing Risks posed by hazardous ground gases to buildings (2007).

British Standards Institute, BS 10175: Investigation of potentially contaminated sites, 2011.

Department of the Environment: Contaminated Land Research Report, *Guidance on Preliminary Site Inspection of Contaminated Land, CLR 2.* 1994.

Environment Agency 2009a Using Soil Guideline Values Science Report SC050021/SGV March 2009

Environment Agency 2009b Updated technical background to the CLEA model Report SC050021/R3 March 2009

Environment Agency 2009c *Human health toxicological assessment of contaminants in soil* Report SC050021/SR2 March 2009

Nathanail, C.P.,McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015 *The LQM/CIEH S4ULs for Human health Risk Assessment* Land Quality Press, Nottingham.

British Geological Survey *The advanced soil geochemical atlas of England and Wales*, Rawlins et al (2012)

UK Water Industry Research Report Ref 10/MW/03/21 *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (2010).

Environment Agency et al 'Waste Classification – Guidance on the classification and assessment of waste', Technical Guidance WM3 (May 2015)

CJAssociates

KEY TO SYMBOLS

CABLE PERCUSSIVE LOG SHEETS

- S Standard penetration test (split spoon)
- C Standard penetration test (cone)
- N Penetration resistance: number of blows-(63.5kg hammer, 0.76m drop) for 300mm penetration
- D Disturbed sample
- B Bulk sample
- W Water sample
- T Small disturbed sample (plastic tub)

- U Undisturbed sample
- b No. of blows to drive
- U100 using 160kg hammer
- X% Percentage recovery in U100 or SPT
- V Vane test
- P Piston sample
- J Jar sample

ROTARY LOG SHEETS

- OH Open hole drilling
- RR Rock roller drilling
- DTH "Down the hole" hammer drilling
- C Coring
- W Water sample
- L Windowless liner sample

- D Disturbed sample
- S Standard penetration test (split spoon)
- C Standard penetration test (cone)

TRIAL PIT LOG SHEETS

D B U38	Disturbed sample Bulk disturbed sample Undisturbed 38mm dia. sample	CBR(M) CBR(P)	California bearing ratio mould sample California bearing ratio
U100 BU	Undisturbed 100mm dia. sample Block undisturbed sample	CBR(S)	penetrometer method California bearing ratio
MP	Mackintosh probe test		standard plunger method
HSV	Hand shear vane test	W	Water sample
PBT	Plate bearing test	J	Jar sample
Т	Small disturbed sample (plastic tub)		

All rock and soil legends in accordance with B.S. 5930:1999 "Code of practice for site investigations".

Wind	OW	Samp	ole	er										
Boreł	nole	e Log	S	hee	ət				WS	No.	WS1	CJAsso	ocia	tes
Site:		Co	wbr	idge	Primary	Sch	ool	:	Start D	ate:	07/04/20)21 King Road Aver	nue	
Job Numt	ber:	207	7172	24				ļ	Finish	Date:	07/04/20)21 Bristol BS11 9HF		
Client:		Мо	rga	n Sin	dall			:	Sheet	1 of 1		Tel: 0117 982 1	473	
Rig Type:		Co	mpe	etitor	Dart			·	Vertica	l Scal	e: 1:2	5		
Sample / Test Depth	Sample	Windowless Sample (L) Blows / % rec		Standa	rd Penetration	n Tests	(SPT	s)	Depth	Thickne	ess Legend	Description of Strata	Reduced Level (m.O.D)	Installation
(m)	itei.	(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value	(11)					
-0.00 - 0.30 -	B1									(0.30		MADE GROUND: Grass over soft to firm light brown slightly		201 - 201 201 - 201 201 - 201
- -0.30 - 0.90 -	B2								0.30		′	sandy slightly gravelly CLAY with many rootlets. Gravel is angular to sub-angular fine to coarse of sandstone and occasional brick		
0.50	ES3									(0.60)	And concrete. MADE GROUND: Greyish brown clayey sandy angular to sub- angular fine to coarse GRAVEL of conductors brick concrete and		
1.00			s	1,1	2,2,1,3	150	300	N=8	0.90			Soft orange brown slightly sandy silty CLAY.	_	
_1.00 - 2.00 	B4											1.10m: Water inflow.		
2.00 2.00 - 3.00	B5		S	2,1	2,2,2,2	150	300	N=8						
	B6		S	1,1	1,2,2,2	150	300	N=7		(3.60				
4.00			S	1,2	2,2,2,2	150	300	N=8						
4.50 - 5.00	Β7								4.50	(0.50		Soft reddish brown clayey SILT.	-	
5.00			s	1,1	2,2,3,3	150	300	N=10	5.00			END OF BOREHOLE	_	
General Remarks [.]	Windowl	ess sample G.I .00m.	L. – 5	.00m. Ir	nstall 50mm m	nonitori	ing	Wat	er Remark	ks: 1.1	10m: Water In	flow	Drilled By:	CF
	meral Windowless sample G.L. – 5.00m. Install 50mm monitoring pipe at 4.00m.												Logged By Checked E	/: AH By: RA

Wind	OW	Samp	ole	er										
Borel	nole	e Log	S	hee	ət				WS I	No.	WS2	CJAsso	ocia	tes
Site:		Co	wbr	ridge	Primary	Sch	ool	ŝ	Start D	ate:	07/04/20)21 King Road Aver	nue	
Job Num	ber:	207	7172	24				I	-inish I	Date:	07/04/20	BS11 9HF		
Client:		Мо	rga	n Sin	Idall			ę	Sheet	1 of 1		Tel: 0117 982 1	473	
Rig Type:		Co	mpe	etitor	Dart			<u> </u>	√ertica ∎	l Scal	e: 1:2	5		
Sample / Test Depth	Sample Ref.	Windowless Sample (L) Blows / % rec.		Standa	rd Penetration	n Tests	(SPT	s)	Depth (m)	Thickne (m)	ess Legend	Description of Strata	Reduced Level (m.O.D)	Installation
(m)		(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value						
-0.00 - 0.25 - -	В1									(0.25)	firm slightly sandy slightly gravelly CLAY with many		
-0.25 - 1.00 -	B2								0.25			rootlets. Gravel is angular to sub- angular fine to medium of		
0.60	ES3									(0.75)	Nandstone. MADE GROUND: Dark grey to black locally brownish grey slightly silty sandy angular to sub-angular fine to coarse ashy GRAVEL of sandstone, mudstone, clinker and		
- 1.00 -1.00 - 3.00	B4		s	0,-	0,1,1,1	150	300	N=3	1.00			occasional slag. Very soft to soft locally firm reddish brown slightly sandy silty CLAY		
-												1.30m: Water inflow.		
2.00			S	1,1	1,1,1,2	150	300	N=5						
	В5		S	0,-	1,1,1,1	150	300	N=4		(3.30				
- 4.00 -4.30 - 5.00	B6		S	1,2	3,3,3,4	150	300	N=13	4.30	(0.70		Firm reddish brown slightly sandy clayey SILT.		
5.00			s	1,2	3,3,4,4	150	300	N=14	5.00			END OF BOREHOLE		
General Remarks:	Windowl	ess Sample G.	L. – 5	5.00m. E	Backfill with be	entonite	э.	Wate	er Remark	ks: 1.	30m: Water In	flow	Drilled By:	CF
						Casi	rdinates:				Checked E	, Ап By: RA		

Wind	OW	Samp	ole	er										
Borel	hole	e Log	S	hee	et				WS I	No.	WS3	CJAsso	ocia	tes
Site:		Co	wbr	ridge	Primary	Sch	ool	;	Start D	ate:	07/04/20	21 King Road Aver	nue	
Job Num	ber:	207	7172	24					Finish	Date:	07/04/20	BS11 9HF		
Client:		Mo	rga	n Sin	Idall			;	Sheet	1 of 1 I Seel	a. 1.0	Tel: 0117 982 14	473	
Rig Type:			mpe	etitor	Dart				vertica	i Scal	e: 1:2	0	_	
Sample / Test Depth	Sample	Windowless Sample (L) Blows / % rec		Standa	rd Penetration	n Tests	s (SPT	s)	Depth (m)	Thickne	ss Legend	Description of Strata	Level (m.O.D)	Installation
(m)	Rei.	(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value	(III) ;	(11)				
-0.00 - 0.20 -	B1									(0.20)		MADE GROUND: Grass over firm slightly sandy slightly		
-0.20 - 1.30 - - - - - - - - - - - - - - - - - - -	B2 ES3								0.20			gravelly CLAY with many rootlets. Gravel is angular to sub- angular fine to medium of sandstone and occasional brick. MADE GROUND: Soft locally		
	200									(1.10)	,	firm brown to reddish brown slightly sandy slightly gravelly to locally gravelly CLAY. Gravel is angular to sub-angular fine to coarse of sandstone, mudstone and occasional limestone, brick		
- 1.00 			S	2,1	2,1,2,2	150	300	N=7				and clinker fragments.		
-1.30 - 3.00	B4								1.30			Very soft reddish brown slightly sandy CLAY. 1.30m: Water inflow		
2.00			S	0,-	0,-,1,1	150	300	N=2						
	В5		S	0,1	1,1,1,1	150	300	N=4		(3.10)				
4.00 	B6		S	0,-	0,1,1,1	150	300	N=3						
- - - - - - - - - - - - - - - - - - -			S	1,2	2,2,3,3	150	300	N=10	4.40	(0.60)		Soft to firm reddish brown slightly sandy clayey SILT. END OF BOREHOLE	_	
General	neral Windowless Sample G.L. – 5.00m. Backfill with bentonite.						e.	Wat	er Remark	(s: 1.3	30m: Water In	flow	Drilled By:	CF
Remarks:	Windowless Sample G.L. – 5.00m. Backfill with bentonite							Cas	ing: rdinates:				Logged By	/: AH
L								000	. un alco.				UNGOKEU E	-y. IVA

wind	OW	Samp	DIE	er									_	
Bore	hole	e Log	S	hee	ət				WS I	No.	WS4	CJAsso	ocia	tes
Site:		Co	wbr	idge	Primary	Sch	ool	:	Start D	ate:	07/04/20)21 King Road Aver	nue	
Job Num	ber:	207	172	24				I	Finish I	Date:	07/04/20)21 Bristol BS11 9HF		
Client:		Мо	rga	n Sin	Idall			;	Sheet [·]	1 of 1		Tel: 0117 982 1	473	
Rig Type		Co	mpe	etitor	Dart				Vertica	l Scale	e: 1:2	5		
Sample / Test Depth	Sample	Windowless Sample (L) Blows / % rec		Standa	rd Penetration	n Tests	(SPT	s)	Depth	Thickne	ss Legend	Description of Strata	Reduced Level (m.O.D)	Installation
(m)	ittei.	(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value	, (11)	(11)				
-0.00 - 0.30	B1 ES2								0.00	(0.30)		MADE GROUND: Grass over firm slightly gravelly CLAY with many rootlets. Gravel is angular to sub-angular fine to medium of		
-0.30 - 1.00 	B3								0.30			sandstone and occasional brick. Very soft to soft light brown to reddish brown locally slightly sandy silty CLAY.		
- 1.00 - 1.00 - 3.00 	B4		S	0,-	1,1,1,1	150	300	N=4				1.40m: Water inflow		
2.00			S	0,-	0,1,1,2	150	300	N=4		(3.90)				
3.00			S	0,-	0,-,1,2	150	300	N=3						
	B5		S	0,-	0,-,-,1	150	300	N=1	4.20	(0.80)		Very soft reddish brown slightly sandy locally sandy clayey SILT.		
5.00			S	0,-	0,1,1,1	150	300	N=3	5.00			END OF BOREHOLE		
General Remarks [.]	Windowl	ess sample G. .00m.	L. – 5	.00m. Ir	nstall 50mm m	nonitori	ing	Wat	er Remark	(s: 1.4	10m: Water In	flow	Drilled By:	CF
	s: pipe at 3.00m.								ing: rdinates:				Logged By Checked E	y: AH By: RA

Wind	OW	Sam	ole	er										
Borel	hole	e Log	S	hee	ət				WS	No.	WS5	CJAsso	ocia	tes
Site:		Co	wbr	idge	Primary	Sch	lool	:	Start D	ate:	07/04/20)21 King Road Aver	nue	
Job Num	ber:	207	7172	24				I	Finish	Date:	07/04/20	Bristor BS11 9HF		
Client:		Мо	rga	n Sir	ndall			:	Sheet	1 of 1		Tel: 0117 982 1	473	
Rig Type:		Co	mpe	etitor	Dart			`	Vertica	l Scale	e: 1:2	5		
Sample / Test Depth	Sample Ref.	Windowless Sample (L) Blows / % rec.		Standa	rd Penetration	n Tests	s (SPT	s)	Depth (m)	Thickne	ss Legend	Description of Strata	Reduced Level (m.O.D)	Installation
(m)		(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value	()	()				
-0.00 - 0.15 -0.15 - 0.90 	B1 B2								0.15	(0.15)		MADE GROUND: Grass over firm slightly gravelly CLAY with many rootlets. Gravel is angular to sub-angular fine to medium of sandstone. MADE GROUND: Soft reddish		
- 0.60 - 0.60	ES3								0.90	(0.75)		brown locally greyish brown slightly sandy slightly gravelly locally gravelly CLAY. Gravel is angular to sub-angular fine to coarse of sandstone and occasional concrete and limestone.		
-0.90 - 3.00 	D4		s	3,2	2,2,1,3	150	300	N=8	0.90			Soft locally very soft reddish brown slightly sandy silty CLAY.		
2.00			s	1,1	2,2,2,2	150	300	N=8				<u>1.40m: Water i</u> nflow		
	В5		S	0,-	0,-,1,1	150	300	N=2		(3.10)				
					1100	450			1.00					
- 4.00 -4.00 - 5.00 - - - - - -	B6		5	,	1,1,2,3	150	300	N=7	4.00	(1.00)	× × × × × × × × × × × × × × × × × × ×	Soft to firm reddish brown locally slightly sandy clayey SILT.		
— 5.00 -			S	2,2	3,3,4,4	150	300	N=14	5.00			END OF BOREHOLE	-	
General Remarks:	Windowless Sample G.L. – 5.00m. Backfill with bentonite						e.	Wate Cas	er Remark ing: rdinates:	ks: 1.4	I I0m: Water In	flow	Drilled By: Logged By Checked F	CF /: AH 3v: RA
L								1000					Shookeu L	-j. ivî

Wind	OW	Samp	ole	er									_	
Borel	hole	e Log	S	hee	et			,	WS	No.	WS6	CJAsso	ocia	tes
Site:		Co	wbr	idge	Primary	Sch	lool	;	Start D	ate:	07/04/20)21 King Road Aver	nue	
Job Numl	ber:	207	7172	24				I	Finish	Date:	07/04/20)21 Bristol BS11 9HF		
Client:		Мо	rga	n Sin	Idall			;	Sheet	1 of 1		Tel: 0117 982 1	473	
Rig Type:		Co	mpe	etitor	Dart			· · · ·	Vertica	l Scale	e: 1:2	5		
Sample / Test Depth	Sample	Windowless Sample (L) Blows / % rec		Standa	rd Penetratio	n Tests	s (SPT	s)	Depth	Thickne	ss Legend	Description of Strata	Reduced Level (m.O.D)	Installation
(m)	itel.	(sample dia.)	Test Type	Seat. Blows	Test Drive Blows	Seat. Pen.	Test Pen.	N-Value	(111)	(11)				
-0.00 - 0.20 -	B1									(0.20)		MADE GROUND: Grass over firm slightly gravelly CLAY with		
-0.20 - 0.65	B2								0.20			many rootlets. Gravel is angular to sub-angular fine to medium of		
- 0.40	ES3								0.65	(0.45)		sandstone. MADE GROUND: Soft to firm reddish brown slightly sandy slightly gravelly CLAY. Gravel is angular to sub-angular fine to coarse of sandstone and		
	D 4								0.05	(0.20)		occasional limestone and clinker. MADE GROUND: Dark brown to		• •
-0.85 - 2.00 	84		S	2,1	2,2,1,1	150	300	N=6	0.85			dark grey slightly clayey sandy angular to sub-angular fine to coarse ashy GRAVEL of sandstone, mudstone and clinker.		
-										(1.15)		brown slightly sandy silty CLAY.		
2.00 2.00 - 3.50	В5		S	0,-	0,-,1,1	150	300	N=2	2.00			Very soft to soft greyish brown sandy CLAY.	_	
- 3.00			S	1,1	1,1,1,2	150	300	N=5		(1.50)				
3.50 - 5.00 	B6		S	0,-	1,1,-,1	150	300	N=3	3.50	(1.50)		Very soft to soft becoming firm reddish brown silty CLAY.		
	Window	ass sample (S	2,3	3,3,4,4	150	300	N=14	5.00	(c [.]] 4 E		END OF BOREHOLE		CF.
Remarks:	pipe at 3	ess sample G. .70m.	∟. – 5	.oom. Ir	istali summ n	IUNITOL	ng	Cas	er Remarl ing:	AS: 1.5	om. water in	IIUW	Logged By	/: AH
	narks: pipe at 3.70m.								rdinates:				Checked E	By: RA

Trial	Pit	Log	Sheet			ΤP	No:	TP1	C		atos
Site:		C	owbridge Primary School						Ľ		ales
Job N	umber	: 20	071724			Shee	et 1 of 1		ĸi	ng Road Avenue	
Client		Μ	lorgan Sindall			Date	:	07/04/202	21 Av	onmouth	
Machi	ne Typ	e: J	CB 3cx			Verti	cal Scale:	1:10	BS	511 9HF	
Depth (m)	Samp Ref	Test / Sample Depth (m)	Test Results	Depth (m)	Thickness (m)	Legend		Description of	f Strata		Reduced Level (m.O.D)
-	D	0.10		0.20	(0.20)		MADE GROUND: C clayey SILT with ma to medium of sands	Grass over firm sligt any rootlets. Gravel stone and mudstone	htly sandy s is angular e.	lightly gravelly to sub-rounded fine	-
	B ES	0.40 - 0.60 0.50		0.20	(0.60)		Firm to stiff orange 0.20m: Geotextile	brown sandy claye	y SILT.		-
- - 1.00	B ES	0.90 - 1.10 1.00		0.80	(0.40)		Soft to firm low stre sandy locally sandy 1.00m: HSV 30/6	ngth reddish brown r CLAY. , 32/10, 40/16 kPa	locally dar	k brown slightly	-
-				1.20			1.20m: Damp.	END OF TRI	AL PIT		-
1.50 - - -											-
Sample Ty	pes: D =	Small distu	rbed sample; B = Bulk disturbed sample; J = Si	mall distur	rbed sample (glass jar);	T = Small disturbed	sample (plastic tub); W = Wa	ter sample.	
Trial Dit St	es:	· Ctol	Lievation (m)				Logged By:	0.05	Checkod	engtn (m) 1.80 	
Groundwa	ter Observ	ations:	1.20m: Damp				Direction of Face A (degrees from N):	30	Excavator D	A B
General R	emarks:	Machi	I	ay test. B	ackfill with ari	sings on co	mpletion.	· · · · · ·			<u>с – -</u>

Trial	Pit	Log	Sheet			ΤP	No:	TP2		intoc
Site:		C	owbridge Primary School						CJASSOC	lates
Job N	umber	: 2	071724			Shee	et 1 of 1			
Client:		Ν	lorgan Sindall			Date	:	07/04/202	1 Avonmouth	
Machi	ne Typ	be: J	CB 3cx			Verti	cal Scale:	1:10	Bristol BS11 9HF	
Depth (m)	Samp Ref	Test / Sample Depth (m)	Test Results	Depth (m)	Thickness (m)	Legend		Description of	Strata	Reduced Level (m.O.D)
-	D	0.10		0.20	(0.20)		MADE GROUND: C SILT with many root coarse of sandstone Firm orange brown	Srass over brown sa tlets. Gravel is angu e, mudstone and occ sandy clayey SILT.	ndy slightly gravelly clayey lar to sub-rounded fine to casional brick.	
0.50 -	B ES	0.40 - 0.60 0.60			(0.70)					-
- - 1.00	B ES	0.90 0.90 - 1.10		0.90			Soft to firm low stre sandy to locally san	ngth reddish brown ∣ dy silty CLAY.	locally dark brown slightly	
-				1.30	(0.40)		1.10m: HSV 38/11	6, 32/12, 28/4 kPa END OF TRIA	NL PIT	-
1.50 -										-
 Sample Ty	pes: D =	Small distu	rbed sample; B = Bulk disturbed sample; J = S	mall distu	rbed sample (glass jar);	T = Small disturbed	sample (plastic tub);	; W = Water sample.	<u>-</u>
Co-ordinat	es:		Elevation (m)		.F (Trial Pit Width (m)	0.70	Trial Pit Length (m) 1.60	
Trial Pit Sid	de Stability	r: Sta	ble				Logged By: AH		Checked By: RA	
Groundwa	ter Observ	ations:	1.30m: Seepage				Direction of Face A (degrees from N):	22 Excavator D	A B
General R	emarks:	Mach	ine excavated pit G.L. – 1.30m. Carry out soakaw	ay test. B	ackfill with ari	sings on co	mpletion.			_

Trial	Pit	Log	Sheet					ΤP	No:	TP3	C		iatoc
Site:		С	owbridge Pri	mary Scho	loc						C	J7350C	ales
Job N	umber	: 20	071724					Shee	et 1 of 1		Kin	g Road Avenue	
Client:		Μ	lorgan Sindal	I				Date	:	07/04/202	21 Ave	onmouth	
Machi	ne Typ	e: J	CB 3cx					Verti	cal Scale:	1:25	BS1	.1 9HF	
Depth (m)	Samp Ref	Test / Sample Depth (m)	Te	st Results		Depth (m)	Thickness (m)	Legend		Description of	f Strata		Reduced Level (m.O.D)
-	D	0.10				0.20	(0.20)	× × × × × × × × 	Grass over brown s rootlets. Gravel is a mudstone and occa Stiff medium streng gravelly CLAY. Grav sandstone and occa	sandy slightly grave ngular to sub-round isional brick and pla gth orange brown ar /el is angular to sub asional clinker and s	elly clayey SI led fine to co astic fragmen nd dark brow p-rounded fin slag.	T with many arse of sandstone ts. n slightly sandy e to coarse of	
0.50 - - - -	ES	0.50				0.90	(0.70)		0.50m: HSV 40/12	2, 44/18, 50/16 kPa prown slightly sandy	v slightly grav	relly clayey SILT.	
1.00 — - - -	B ES	1.20 - 1.40 1.30					(0.60)	× × × × × × × × × × × × × × × × × × × ×	Gravel is angular to mudstone.	sub-angular fine to	nedium of s	sandstone and	
1.50 - - -						1.50		<u> </u>	1.50m: Damp	END OF TRI	AL PIT		
2.00													
- 2.50 - - -													
- 3.00 — - -													
- 3.50 - - -													
4.00 - -													
4.50 -													
 Sample Ty	pes: D = :	Small distu	rbed sample; B = Bu	k disturbed samp	le; J = Sm	all distur	bed sample (glass jar);	l T = Small disturbed	sample (plastic tub)); W = Wate	r sample.	
Co-ordinate	es:			Elevation (m)					Trial Pit Width (m)	0.70	Trial Pit Ler	gth (m) 1.70	
Trial Pit Sid	de Stability	Stat	ble						Logged By: AH	da ana a fa a hii	Checked By	/: RA	A
Groundwat	er Observa	Machi	ine excavated pit G.L.	– 1.50m. Carry o	ut soakawa	y test. Ba	ackfill with ari	sings on co	urection of ⊢ace A (uegrees from N):	38	Excavator D	C B

Trial	Pit	Log	Sheet			ΤP	No:	TP4		atoc
Site:		С	owbridge Primary S	chool					CJ/350C	ales
Job N	umber	: 2	071724			Shee	et 1 of 1		King Dood Augnug	
Client		N	lorgan Sindall			Date	:	07/04/2021	Avonmouth Bristol	
Machi	ne Typ	be: J	CB 3cx			Verti	cal Scale:	1:10	BS11 9HF	
Depth (m)	Samp Ref	Test / Sample Depth (m)	Test Results	Depth (m)	Thickness (m)	Legend		Description of Str	ata	Reduced Level (m.O.D)
-					(0.20)		MADE GROUND: SILT with many roc coarse of sandstor	Grass over brown sandy otlets. Gravel is angular e.	/ slightly gravelly clayey to sub-rounded fine to	_
-	B ES	0.20 - 0.40		0.20	(0.30)		MADE GROUND: fine to coarse GRA and clinker with lov and brick.	Greyish brown silty san WEL of sandstone and d w cobble content. Cobbl	dy angular to sub-angular occasional brick, concrete es are angular of sandstone	
0.50 -	в	0.60		0.50	(0.20)		MADE GROUND: 0.50m: Geotextil	Asphalt. e		
-	В	0.90 - 1.10		0.70			Firm to stiff mediur sandy to sandy silt	n strength light brown tc y CLAY.	o orange brown slightly	
1.00	ES	1.00			(0.70)		1.00m: HSV 50/2	20, 56/22, 60/20 kPa		-
- - 1.50 -				1.40			1.40m: Seepage	END OF TRIAL I	PIT	, -
-										-
- - Samula Tu	nes: D =	Small dietu	rhed sample: B = Bulk disturbed	sample: .1 = Small dict:	Irbed sample	(djass jar);	T = Small disturbed	sample (nlastic tub). V	N = Water sample	
Co-ordinat	es: D=	omali distu	Elevation	(m)	i deu sample	(yiass jar);	Trial Pit Width (m)	0.70 Tri	al Pit Length (m) 1.80	
Trial Pit Sid	de Stabilitv	: Sta	ble	× /			Logged By: AH	Ch	ecked By: RA	
Groundwa	ter Observ	ations:	1.40m: Seepage				Direction of Face A	(degrees from N):	230 Excavator D	АВ
General R	emarks:	Machi	I ine excavated pit G.L. – 1.40m. Ca	arry out soakaway test. E	Backfill with ar	isings on co	ompletion.			C

Trial	Pit	Log	Sheet					ΤP	No:	TP5	C		atoc
Site:		C	owbridge Pri	mary Scho	bol							JASSOCI	ales
Job Ni	umber	: 20	071724	-				Shee	et 1 of 1				
Client:		Μ	lorgan Sinda	I				Date	:	07/04/202	Kin 21 Avo	g Road Avenue onmouth	
Machi	ne Typ	e: J	CB 3cx					Verti	cal Scale:	1:25	Bris BS1	tol 1 9HF	
		Test /											Reduced Level
(m)	Samp Ref	Sample Depth (m)	Te	est Results	L	Depth (m)	Thickness (m)	Legend		Description of	Strata		(m.O.D)
-					(0.15	(0.15)		Grass over brown s rootlets. Gravel is a mudstone and occa Stiff light brown to o cobble content. Gra sandstone, mudstor sandstone and brick	andy slightly gravel ngular to sub-round sional brick. range brown slightl vel is angular to su te, brick and clinker t.	ly clayey SIL led fine to co y sandy grav b-angular fin r. Cobbles ar	T with many arse of sandstone, elly CLAY with low e to coarse of e angular of	
0.50 - - -	B ES	0.50 0.50 - 0.70					(0.75)		-				-
- - 1.00 — -	B ES	1.00 1.00 - 1.20			(0.90	(0.30)		Firm to stiff medium	strength greyish bi 1, 50/12, 62/22 kPa	rown slightly	sandy clayey SILT.	-
- - 1.50 - -									1.20m: Slow Inflo	END OF TRI	AL PIT	/	-
													-
													-
													-
3.00 — - - -													
3.50 - - -													-
- 4.00 - -													-
- 4.50 - -													-
-													-
Sample Ty	pes: D =	Small distu	rbed sample; B = Bu	lk disturbed samp	ole; J = Smal	ll distur	bed sample (glass jar);	T = Small disturbed	sample (plastic tub)	; W = Wate	r sample.	
Trial Pit Sid	es:	. Qtal	hle	Elevation (m)					Logged By:	0.70	Checked P	gun (m) 1.60	
Groundwat		. Jai ations:	1 20						Direction of Face A (degrees from NI).	40	Excavator	A R
General Re	emarks:	Machi	ne excavated pit G.L.	– 1.20m. Carry o	ut soakaway	test. Ba	ackfill with ari	sings on co	mpletion.				<u>c</u>

Trial	Pit	Log	Sheet				ΤP	No:	TP6	C		atoc
Site:		C	owbridge Pri	mary School						C.	J/4550CI	ales
Job N	umber	: 2	071724				Shee	et 1 of 1		Kin	g Road Avenue	
Client:		N	lorgan Sindal	I			Date	:	07/04/202	21 Avo	onmouth	
Machi	ne Typ	e: J	СВ 3сх				Vertic	cal Scale:	1:10	BS1	.1 9HF	
Depth (m)	Samp Ref	Test / Sample Depth (m)	Te	st Results	Depth (m)	Thickness (m)	Legend		Description of	f Strata		Reduced Level (m.O.D)
-					0.15	(0.15)		MADE GROUND: C clayey SILT with ma to medium of sands MADE GROUND: F clayey SILT with me rounded fine to coal concrete. Cobbles a	Grass over firm sligt any rootlets. Gravel tone and mudstone irm light brown to b sdium cobble conte rse of sandstone, rr are angular of sand	ntly sandy sliq is angular to a. prown slightly nt. Gravel is rudstone, bri stone and bri	ghtly gravelly sub-rounded fine sandy gravelly angular to sub- ck, clinker and ck.	-
0.50 -	B ES	0.40 0.40 - 0.60				(0.65)						-
- 1.00 —	B ES	0.80 0.80 - 1.00			0.80	(0.15)		MADE GROUND: D angular to sub-angu and slag. Stiff to very stiff med CLAY with occasion	Dark grey to black s Jlar fine to coarse G dium to high streng Ial roots.	lightly silty sli BRAVEL of cl	ghtly sandy inker, mudstone own slightly sandy	-
-						(0.55)		1.30m: HSV 60/24	8, 76/24, 80/20 kPa			-
1.50 -					1.50			1.50m: Seepage	END OF TRI	AL PIT		
-												-
Sample Ty	pes: D =	Small distu	rbed sample; B = Bul	k disturbed sample; J	= Small distur	bed sample (glass jar);	T = Small disturbed	sample (plastic tub); W = Wate	er sample.	
Trial Pit Sid	de Stability	: Sta	ble					Logged By: AH	5.70	Checked By	/: RA	
Groundwa	ter Observ	ations:	1.50m: Seepage					Direction of Face A (degrees from N):	45	Excavator D	А в
General R	emarks:	Machi	ine excavated pit G.L.	– 1.50m. Carry out soal	kaway test. Ba	ackfill with ari	sings on co	mpletion.				<u> </u>

IN SITU TEST RESULTS

Portview Road, Avonmouth, Bristol, BS11 9JE T 0117 9821473

Email admin@cjageo.co.uk

REPORT No.	:	: 2071724				
CLIENT	:	Morgan S	Sindall			
SITE	:	Cowbridg	e Primary Scho	ol		
MATERIAL DESCRIPTION	:	Topsoil a	nd clay			
DATE TESTED	:	07 April 2	2021			
TESTING REQUIRED	:	6	No. TRL DCP	Tests		
			D / 0 / 000			
RELEVANT SPECIFICATION	:	BS 1377 : Part 9 : 1990 IAN 73/06 (supercedes HD 25/94				
TEST METHOD	:	BS1377 & TRL				
TEST RESULTS	:	See Page	es 3 -	8		

Page 1 of 8

CJAssociates

Portview Road, Avonmouth, Bristol, BS11 9JE

T 0117 9821473

Email admin@cjageo.co.uk

REPORT No.	:	2071724
CLIENT	:	Morgan Sindall
SITE	:	Cowbridge Primary School
TEST LOCATION	:	At locations as directed by Client and detailed on Client's records
DEPTH (m)	:	See individual tests
TEST RESULTS	:	See over

COMMENTS

CHECKED BY: Richard Anstee

DAT

DATE: 08.04.21

Page 2 of 8

DYNAMI	C CONE	PENETR	OMETER T	EST RES	ULTS	Date Job No.		07/04/2021 2071724	CJAsso	ociates
Client Name)		Morgan S	Sindall		Zero Read	ding	116	Depth (mm):	0
Job Name		Cov	wbridge Prii	mary Scho	loc	Test No.		1	Locn:	DCP01
Total No. of Blows	Depth Reading (mm)	Total depth (mm)	penetration per blow (mm)	Layer	l op of layer (mm)	Base of layer (mm)	top of laver	Blows at base of layer	penetration per blow (mm)	CBR of layer (%)
0	116 253 279	0 137 162	0 137.00 25.00	Layer 1	137	414	1	16	18.5	14
3	306	190	28.00							
4	321	205	15.00	Layer 2	414	818	16	25	44.9	5.4
5	338	222	17.00							
7	372	256	17.00							
8	395	279	23.00							
9	412	296	17.00							
10	435	319	23.00							
11	456	340	21.00							
12	471	372	17.00							
14	509	393	21.00							
15	520	404	11.00							
16	530	414	10.00							
17	561	445	31.00							
18	623	507	34.00							
20	667	551	44.00							
21	719	603	52.00							
22	778	662	59.00							
23	834	718	56.00							
24	934	818	44 00							
20		0.0								
]	
0			10	otal no of c	nows	20		30		
ľ ľ		l avor 1								
100		Layer				wor 2				
200 -										
-			•	<u> </u>	_/					
300				\mathbf{X}	/					
Ê 400 -			•				\			
E) 500							1			
bt bt					•					
o 600							\rightarrow			
700						×.				
						-				
800 -							~			
900										
Remarks:		BS 1377 ·	Part 9 · 1990	IAN 73/06	(supercer	les HD 25/9	4). Test st	arted at existi	na around leve	el.
Particles >20	mm	Yes				Weather	Drv			
Operators		AH/ME					Sheet	3	of	8
						1		0	5.	-

DYNAMI	C CONE	PENETR	OMETER T	EST RE	SULTS	Date Job No.		07/04/2021 2071724	CJAsso	ciates
Client Name	9		Morgan S	Sindall		Zero Rea	ding	126	Depth (mm):	0
Job Name		Cov	wbridge Prir	nary Sc	lool	Test No.		2	Locn:	DCP02
Total No. of Blows	Depth Reading (mm)	Total depth (mm)	penetration per blow (mm)	Layer	l op of layer (mm)	Base of layer (mm)	top of laver	Blows at base of layer	penetration per blow (mm)	CBR of layer (%)
0	126 256	0 130	0 130.00	Layer 1	130	330	1	18	11.8	22
3	319	175	18.00							
4	328	202	9.00	Layer 2	330	824	18	35	29.1	8.6
5	341	215	13.00	-						
7	372	246	15.00							
8	389	263	17.00							
9	402	276	13.00							
10	414	288	12.00							
12	422	296	8.00							
13	431	305	3.00							
14	438	312	7.00							
15	443	317	5.00							
16	446	320	3.00							
17	450	324	6.00							
19	470	344	14.00							
20	494	368	24.00							
21	520	394	26.00							
22	550	424	30.00							
24	619	493	37.00							
25	662	536	43.00							
26	710	584	48.00							
27	749	623	39.00							
28	795 814	688	46.00							
30	832	706	18.00							
31	860	734	28.00							
32	878	752	18.00							
33	903	777	25.00							
35	929	824	21.00							
									г	
			т	otal no of	blows					
٥Ŷ		10	_	20		30		40		
100		Layer 1								
			\sim		La	ayer 2				
200										
300 -			*****				\setminus			
Ê 400					k		\backslash			
Ē					<u> </u>		\rightarrow			
500 bt					<u> </u>					
o 600 -										
700										
							** \			
800 -								•		
900										
Remarks:		BS 1377 ·	Part 9 1990	IAN 73/0	6 (superce	des HD 25/9)4). Test st	arted at existi	na around lev	el.
Particles >20	mm	Yes				Weather	Drv			
Operators		AH/ME					Sheet	4	of	8
						1		1	5.	-

DYNAMI	C CONE	PENETR	OMETER 1	EST RES	ULTS	Date Job No.		07/04/2021 2071724	CJAsso	ciates
Client Name)	Co	Morgan :	Sindall		Zero Rea	ding	126	Depth (mm):	0
JOD Maine	Lenin	00		mary Sch		Test NO.	BIOWS at	3	LUCII.	DCP03
Total No. of	Reading	Total depth	penetration	Layer	layer	Base of	top of	Blows at base	penetration	CBR of layer
BIOWS	(mm)	(11111)	per blow (mm)		(mm)	layer (mm)	laver	or layer	per blow (mm)	(%)
0	126	0	0	Lavar 1	107	050		40	10.0	20
1	203	1/2	127.00	Layer	127	659	1	42	13.0	20
2	200	142	6.00							
4	283	157	9.00	1						
5	303	177	20.00							
6	330	204	27.00	1						
7	352	226	22.00	1						
8	371	245	19.00	1						
9	403	277	32.00	1						
10	420	294	17.00	1						
11	438	312	18.00	1						
12	453	327	15.00	1						
13	465	339	12.00	1						
14	478	352	13.00	1						
15	487	361	9.00							
16	495	369	8.00							
17	509	383	14.00							
18	516	390	7.00]						
19	528	402	12.00							
20	534	408	6.00]						
21	550	424	16.00							
22	561	435	11.00							
23	5/2	446	11.00							
24	581	455	9.00							
25	593	467	12.00	-						
20	610	481	14.00	4						
28	629	493 503	10.00							
20	650	524	21.00	-						
30	668	542	18.00	1						
31	681	555	13.00							
32	699	573	18.00	1						
33	703	577	4.00	1						
34	716	590	13.00	1						
35	720	594	4.00	1						
36	730	604	10.00	1						
37	734	608	4.00							
38	744	618	10.00	Test t	ermina	ted early				
39	758	632	14.00	due t	o badlv	deflected				
40	764	638	6.00	rode	,					
41	779	653	15.00	Tous.						
42	785	659	6.00							
0		10	20	fotal no of b	olows 30		40	50		
L A										
100			Laye	r 1						
F F				-						
200	`	_								
		`								
e 300					\sim					
Ē		<u> </u>			$ \rightarrow $					
) u : 400						\searrow				
ept				***						
ă ₅₀₀										
500						\sim				
						••••	\mathbf{X}			
600 -										
-										
700										
Remarks:		BS 1377 ·	Part 9 · 1990	IAN 73/06	(supercer	des HD 25/9	4). Test st	arted at existi	na around leve	el.
Particlos > 20	mm	Voc		,	12000000	Weathor	Drv			~
		105				VVEaliter		-		
Operators		AH/MĒ					Sneet	5	to	8

DYNAMI	C CONE	PENETR	OMETER T	EST RES	ULTS	Date Job No.		07/04/2021 2071724	CJAsso	ciates
Client Name	9	0	Morgan S	Sindall	I	Zero Rea	ding	126	Depth (mm):	0
Job Name		Co	worldge Pril	mary Scho		Test No.	BIOWS OF	4	Locn:	DCP04
Total No. of	Reading	Total depth	penetration	Layer	layer	Base of	top of	Blows at base	penetration	CBR of layer
BIOWS	(mm)	(mm)	per blow (mm)		(mm)	layer (mm)	laver	or layer	per blow (mm)	(%)
1	120	52	52.00	Laver 1	52	430	1	22	18.0	14
2	203	77	25.00	Layor	52	400		22	10.0	17
3	223	97	20.00							
4	240	114	17.00	Layer 2	430	623	22	54	6.0	45
5	259	133	19.00							
6	281	155	22.00							
8	312	172	14.00							
9	331	205	19.00							
10	349	223	18.00							
11	368	242	19.00							
12	387	261	19.00							
13	406	280	19.00							
14	450	324	25.00							
16	476	350	26.00							
17	502	376	26.00							
18	520	394	18.00							
19	534	408	14.00							
20	542 550	416	8.00							
22	556	430	6.00							
23	560	434	4.00							
24	562	436	2.00							
25	567	441	5.00							
26	5/1	445	4.00							
28	580	440	6.00							
29	584	458	4.00							
30	588	462	4.00							
31	591	465	3.00							
33	602	476	5.50							
35	611 622	485	4.50							
39	631	490 505	4 50							
41	644	518	6.50							
43	655	529	5.50							
45	663	537	4.00							
48	677	551	4.67							
53	701	575 601	13.00							
54	749	623	22.00							
			_							
0		10	20	otal no of t	lows	40	50	60		
0										
	A .		Layer 1		_					
100	- N				La	iyer 2				
200										
~ 200										
۵00 E										
-) Ч 400			╲. / /							
ept				••••						
م										
600 -										
								•		
700										
	1	1								
Remarks:		BS 1377 :	Part 9 : 1990	IAN 73/06	(superced	les HD 25/9	4). Test st	arted at existi	ng ground lev	el.
Particles >20	mm	Yes				Weather	Dry			
Operators		AH/ME					Sheet	6	of	8

DYNAMI	C CONE	PENETR	OMETER T	EST RES	ULTS	Date Job No.		07/04/2021 2071724	CJAsso	ciates
Client Nam	e	0.	Morgan S	Sindall	1	Zero Rea	ding	173	Depth (mm):	0
Job Name	1.00070	Cov	wbridge Prir	mary Scho		Test No.		5	Locn:	DCP05
Total No. of Blows	Reading (mm)	Total depth (mm)	penetration per blow (mm)	Layer	layer (mm)	Base of layer (mm)	top of laver	Blows at base of layer	penetration per blow (mm)	CBR of layer (%)
0	173 214	0 41	0 41.00	Laver 1	41	300	1	33	8.1	33
2	230	57	16.00						••••	
3	242	69	12.00							
4	250	77	8.00	Layer 2	300	360	33	66	1.8	>100
5	263	90	13.00							
6	269	96	6.00							
0 10	200	112	6.00							
10	309	136	6.00							
14	323	150	7.00							
16	340	167	8.50							
18	358	185	9.00							
20	378	205	10.00							
22	390	217	6.00							
23	403	230	13.00							
24	413	240	10.00							
25	419	246	6.00							
27	428	255	4.50							
29	444	271	9.00							
33	473	300	5.00							
35	481	308	4.00							
38	488	315	2.33							
42	501	328	3.25							
46	509	336	2.00							
50	514	341	1.25							
54	520	347	1.50							
58	525	352	1.25							
62	530	357	0.75							
00	555	300	0.75							
									7	
			т	otal no of b	lows					
0		10	20	30	40	50	60	70		
			Layer 1							
50						Lavor 2				
100						Layer 2				
100										
150				_			\rightarrow			
Ê		L 🔨					$\langle \rangle$			
E 200			\mathbf{k}				$ \rightarrow $			
닱										
			- *							
								\backslash		
300								$\langle \rangle$		
350						*				
								• -••		
400										
	1	1								
Remarks:		BS 1377 :	Part 9 :1990,	IAN 73/06	(superced	les HD 25/9	4). Test st	arted at existi	ng ground lev	el.
Particles >20	mm	Yes				Weather	Dry			
Operators		AH/ME					Sheet	7	of	8

DYNAMI	C CONE	PENETR	OMETER T	EST RE	SULTS	Date Job No.		07/04/2021 2071724 CJAsso		ciates
Client Name	9	Co	Morgan S	Sindall	haal	Zero Read	ding	151	Depth (mm):	0
Job Name		00	wondge Prir	nary Sc		Test No.	BIOWC OF	6	LOCH	DCP06
Total No. of Blows	Reading (mm)	Total depth (mm)	penetration per blow (mm)	Layer	layer (mm)	Base of layer (mm)	top of laver	Blows at base of layer	penetration per blow (mm)	CBR of layer (%)
0	151 273	0 122	0 122.00	Layer 1	122	422	1	10	33.3	7.4
2	305	154	32.00		_					
4	356	205	26.00	Layer 2	422	792	10	17	52.9	4.6
5	383	232	27.00							
6	413	262	30.00							
7	454	303	41.00							
8	506	355	52.00							
9 10	539	388	33.00							
10	625	422	52.00							
12	703	552	78.00							
13	752	601	49.00							
14	811	660	59.00							
15	882	731	71.00							
16	919	768	37.00							
17	943	792	24.00							
									7	
			т	otal no o	fblowe					
				otal no o	DIOWS					
0				10				20		
P	\backslash		Laver 1			— L	ayer 2			
100				\						
200										
-			~	\rightarrow						
300 -			· •	- +	_/_					
Ê 400			*		/					
Ë +00					<					
ୁ ମୁ					×					
ebi										
D 600										
700						<u> </u>				
-										
800										
900										
Remarks:		BS 1377 :	Part 9 : 1990,	, IAN 73/0	6 (superced	es HD 25/9	4). Test st	arted at existi	ng ground lev	əl.
Particles >20	mm	Yes				Weather	Dry			
Operators AH/ME							Sheet	8	of	8

CJASSOCIATES SOIL INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design. Remarks - Logged by CJA on site. For strata descriptions, refer to TP1 log. Approx outflow time from water tank was 1 minute.	Time(min) 0 1 2 3	Site Job Number Client Date of Test TEST 1 Depth to Water (m) 0.51 0.51 0.51 0.51	Cowbridge Primary Schoo 2071724 Morgan Sindall 07/04/2021 TEST 2 Time(min) Depth to 0 1 2 3	I Trial Pit Nu Length Width Depth Groundwat	rmber er Level Time(min) 0 1 2 3	SA1 1.80 m 1.20 m Damp TEST 3 Depth to Water (m)
Soil Infiltration rate calculated using extrapolated data.	4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300 360	0.51 0.51 0.51 0.52 0.53 0.54 0.55 0.55 0.55 0.55 0.55 0.57 0.59 0.59 0.60 0.61 0.61 0.63 0.64	4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300 360		4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300 360	
Effective Storage Depthm75% Effective Storage Depthm(i.e. depth below GL)m25% Effective Storage Depthm(i.e. depth below GL)mEffective Storage Depth 75%-25%mTime to fall to 75% effective depthminsTime to fall to 25% effective depthminsV (75%-25%)m3a (50%)m2t (75%-25%)mins		0.69 0.52 0.68 0.17 1.03 0.35 560.00 1860.00 0.40 2.86 1300.00				

DESIGN SOIL INFILTRATION RATE, f

1.81E-06

CJAssociates Soil INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design.		Site Job Number Client Date of Test TEST 1	Cowbridge Primary School Trial Pit Nu 2071724 Length Morgan Sindall Width 07/04/2021 DepthGroundwate		mber SA2 		
Logged by CJA on site. For strata descriptions, refer to TP2 log.	l ime(min)	Depth to Water (m)	Depth to V	vater (m)	Time(min)	Depth to Water (m)	
Approx outflow time from water tank was 1 minute. Soil Infiltration rate calculated using extrapolated data.	0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300		0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180 210 240 300		
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth m Effective Storage Depth 75%-25% m Time to fall to 75% effective depth mins Time to fall to 25% effective depth mins V (75%-25%) m3 a (50%) m2 t (75%-25%) mins	360	0.65 0.78 0.59 0.72 0.20 1.11 0.39 800.00 3950.00 0.44 2.91 3150.00 7.93E-07	360		360		

DESIGN SOIL INFILTRATION RATE, f 7.

7.93E-07

CJASSOCIATES SOIL INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design. Remarks - Logged by CJA on site. For strata descriptions, refer to TP3 log. Approx outflow time from water tank was 1 minutes. Soil Infiltration rate calculated using extrapolated data.	Time(min) 0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180	Site Job Number Client Date of Test Depth to Water (m) 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	Cowbridge Primary School 2071724 Morgan Sindall 07/04/2021 Time(min) Depth to 0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180	Trial Pit Nu Length Groundwate Water (m)	mber er Level Time(min) 0 1 2 3 4 5 7 10 15 20 30 45 60 90 120 150 180	SA3 1.70 m 0.70 m 1.50 m Damp TEST 3 Depth to Water (m)
	210 240 300 360	0.96 0.97 0.98 1.00	210 240 300 360		210 240 300 360	
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth m Time to fall to 75% effective depth mins Time to fall to 25% effective depth mins V (75%-25%) m3 a (50%) m2 t (75%-25%) mins		0.71 0.53 0.97 0.18 1.32 0.36 240.00 1160.00 0.42 2.89 920.00				
SOIL INFILTRATION RATE m/s		2.64E-06				

DESIGN SOIL INFILTRATION RATE, f

2.64E-06

CJAssociates SOIL INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design. Remarks - Logged by CJA on site. For strata descriptions, refer to TP4 log. Approx outflow time from water tank was 1 minutes. Soil Infiltration rate calculated using extrapolated data.	Time(min) 0 1 2 3 4 5 7 10 15 20 30	Site Job Number Client Date of Test TEST 1 Depth to Water (m) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	Cowbridge Primary School 2071724 Morgan Sindall 07/04/2021 Time(min) Depth to 0 1 2 3 4 5 7 10 15 20 30	Trial Pit Nu Length Width Depth Groundwate	mber er Level Time(min) 0 1 2 3 4 5 7 10 15 20 30	SA4 1.80 m 0.70 m 1.40 m Damp TEST 3 Depth to Water (m)
	45 60 90 120 150 180 210 240 270 300	0.83 0.84 0.85 0.86 0.87 0.87 0.87 0.89 0.90 0.91	45 60 90 120 150 180 210 240 300 360		45 60 90 120 150 180 210 240 300 360	
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth 75%-25% m Time to fall to 75% effective depth mins Time to fall to 25% effective depth mins V (75%-25%) m3 a (50%) m2 t (75%-25%) mins		0.60 0.45 0.95 0.15 1.25 0.30 450.00 1500.00 0.38 2.76 1050.00				
SOIL INFILTRATION RATE m/s		2.17E-06				

DESIGN SOIL INFILTRATION RATE, f

2.17E-06

CJASSOCIATES SOIL INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design. Remarks - Logged by CJA on site. For strata descriptions, refer to TP5 log. Approx outflow time from water tank was 1 minutes. Soil Infiltration rate calculated using extrapolated data.	Time(min) 0 1 2 3 4 5	Site Job Number Client Date of Test TEST 1 Depth to Water (m) 0.40 0.40 0.40 0.40 0.40 0.41 0.41	Cowbridge Primary School 2071724 Morgan Sindall 07/04/2021 Time(min) Depth to 0 1 2 3 4 5	Trial Pit Nu Length Width Groundwate	mber S Pr Level S Time(min) 0 1 2 3 4 5	SA5 1.60 m 0.70 m 1.20 m low Inflow TEST 3 Depth to Water (m)
	7 10 15 20 30 45 60 90 120 150 180 210 240 270 300	0.41 0.42 0.42 0.42 0.43 0.44 0.44 0.46 0.49 0.51 0.51 0.54 0.55 0.57 0.59 0.61	7 10 15 20 30 45 60 90 120 150 180 210 240 300 360		7 10 15 20 30 45 60 90 120 150 180 210 240 300 360	
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m Effective Storage Depth m Time to fall to 75% effective depth mins Time to fall to 25% effective depth mins V (75%-25%) m3 a (50%) m2 t (75%-25%) mins		0.80 0.60 0.20 1.00 0.40 300.00 900.00 0.45 2.96 600.00				
SOIL INFILTRATION RATE m/s		4.20E-06				

DESIGN SOIL INFILTRATION RATE, f 4

4.20E-06

CJAssociates SOIL INFILTRATION RATE TEST See B.R.E. Digest 365, 2016, Soakaway Design. Remarks - Logged by CJA on site. For strata descriptions, refer to TP6 log. Approx outflow time from water tank was 1 minutes. Soil Infiltration rate calculated using extrapolated data	Time(min) 0 1 2 3 4 5	Site Job Number Client Date of Test TEST 1 Depth to Water (m) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Cowbridge Primary School 2071724 Morgan Sindall 07/04/2021 TEST 2 Time(min) Depth to V 0 1 2 3 4 5	Trial Pit Nu Length Width Depth Groundwate	mber er Level Time(min) 0 1 2 3 4 5	SA6 1.75 m 0.70 m 1.50 m Seepage TEST 3 Depth to Water (m)
	7 10 15 20 30 45 60 90 120 150 180 210 240 270 300	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	7 10 15 20 30 45 60 90 120 150 180 210 240 300 360		7 10 15 20 30 45 60 90 120 150 180 210 240 300 360	
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m m (i.e. depth below GL) m Effective Storage Depth m Time to fall to 75% effective depth mins Time to fall to 25% effective depth mins V (75%-25%) m3 a (50%) m2 t (75%-25%) mins		0.60 0.45 1.05 0.15 1.35 0.30 550.00 1650.00 0.37 2.70 1100.00				
SOIL INFILTRATION RATE m/s		2.07E-06				

DESIGN SOIL INFILTRATION RATE, f

2.07E-06

MONITORING RESULTS
GAS AND GROUNDWATER MONITORING RESULTS

Project:	Cowbridge Primary School	Job no: 2071724	Date: 16/04/2021	Visit 1
Time of start of vis Time of end of vis	sit: 8.00 it: 9.00	Barometric pressure start of visit:		

Barometric pressure trend - preceding 24 hrs: Rising

Weather conditions: Dry

Remarks: Comments: Steady state value are taken when there is no change for 1 minute. All measurements taken from the current ground level.

Ground conditions: Dry

Monitoring Po	int	Methane (% vol) CH ₄	Carbon Dioxide (% vol) CO ₂	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (l/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks
Ambient		0.0	0.0	0	20.8	0	0.0					
WS1	Peak	0	0.2	0	18.7	0	0.0	None detected	0.00	0.00	1.64	
WOT	Steady	0	0.2	0	18.8	0	0.0	None deteoted	0.00	0.00	1.04	
WS4	Peak	0	2.0	0	19.2	0	0.0	None detected	0.00	0.00	1 18	
	Steady	0	1.2	0	19.6	0	0.0	None deteoled	0.00	0.00		
WS6	Peak	0	0.2	0	19.6	0	0.0	None detected	0.00	0.00	1.63	
	Steady	0	0.1	0	19.9	0	0.0			0.00	1.00	
											<u> </u>	<u> </u>

GAS AND GROUNDWATER MONITORING RESULTS

Project:	Cowbridge Primary School	Job no: 2071724	Date: 27/04/2021	Visit 2
Time of start of vis Time of end of vis	sit: 8.00 it: 9.00	Barometric pressure start of visit:		

Barometric pressure trend - preceding 24 hrs: Steady

Weather conditions: Dry

Remarks: Comments: Steady state value are taken when there is no change for 1 minute. All measurements taken from the current ground level.

Ground conditions: Dry

Monitoring Poi	nt	Methane (% vol) CH ₄	Carbon Dioxide (% vol) CO ₂	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (l/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks
Ambient		0.0	0.0	0	20.6	0	0.0					
WS1	Peak	0.0	0.3	0	19.0	0	0.0	None detected	0.00	0.00	1.69	
	Steady	0.0	0.3	0	19.0	0	0.0	None detected	0.00	0.00	1.00	
WS4	Peak	0.0	1.8	0	19.6	0	0.0	None detected	0.00	0.00	1.26	
	Steady	0.0	1.5	0	19.3	0	0.0	Hone deteoled	0.00	0.00	1.20	
WS6	Peak	0.0	0.4	0	19.8	0	0.0	None detected	0.00	0.00	1.68	
	Steady	0.0	0.2	0	19.5	0	0.0			0.00		
											<u> </u>	

GAS AND GROUNDWATER MONITORING RESULTS

Project:	Cowbridge Primary School	Job no: 2071724	Date: 11/05/2021	Visit 3
Time of start of vis Time of end of vis	sit: 12.30 iit: 13.30	Barometric pressure start of visit:		

Barometric pressure trend - preceding 24 hrs: Steady

Weather conditions: Overcast/Raining

Remarks: Comments: Steady state value are taken when there is no change for 1 minute. All measurements taken from the current ground level.

Ground conditions: Damp/Wet

Monitoring Poi	nt	Methane (% vol) CH ₄	Carbon Dioxide (% vol) CO ₂	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (l/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks
Ambient		0.0	0.0	0	20.4	0	0.0					
W/S1	Peak	0.0	0.3	0	18.9	0	0.0	None detected	0.00	0.00	1.60	
W31	Steady	0.0	0.2	0	19.0	0	0.0	None detected	0.00	0.00	1.00	
WS4	Peak	0.0	1.5	0	19.3	0	0.0	None detected	0.00	0.00	1 23	
	Steady	0.0	1.3	0	19.5	0	0.0	None deteoted	0.00	0.00	1120	
WS6	Peak	0.0	0.3	0	19.8	0	0.0	None detected	0.00	0.00	1 58	
	Steady	0.0	0.1	0	20.0	0	0.0			0.00	1.00	
										<u> </u>	<u> </u>	

LABORATORY TESTS

Laboratory Test Certificate

cjassociates

Site	Cowbridge Primary School
Client	Morgan Sindall
Job Number	2071724
Lab Number	L14879
Order Number	-

F.A.O. Aled Henry

Number of samples submitted for testing:	 15	sample (s)
Natural Moisture Content	12	test(s)
Atterberg Limit	12	test(s)
Particle Size Distribution - Coarse	4	test(s)
Particle Size Distribution - Fine	1	test(s)
pH	5	test(s)
Water Soluble Sulphate	5	test(s)
* Non UKAS Accredited Test		
Date (s) sample (s) received at laboratory:	14	Apr-21
Date of receipt of testing instructions	14	Apr-21
Date testing started:	19	Apr-21
Date of issue:	5	May-21

Please note that we will keep the sample (s) for one month after submission of our report and will then dispose of them without notice unless you ask us to store them. We will then make a separate charge for this.

Approved by : Lisa Maiden

1429

cjasso	cic	tes		Summary of Classification Test Results										
Project No. 2071	724		Project	Project Name Cowbridge Primary School										
		Sai	nple			Dens	ity	W Passing		LL	PL	ΡI	Particle	
Hole No.	Ref	Тор	Base	Туре	Soil Description	bulk Mg/m	dry 13	%	425µm %	%	%	%	density Mg/m3	Remarks
TP1	4	0.90	1.10	в	Refer to Logs			25.0	98	42	17	25		AL Prep:1
TP3	4	1.20	1.40	В	Refer to Logs			21.6	100	39	18	21		AL Prep:1
TP4	4	0.90	1.10	В	Refer to Logs			17.6	100	35	16	19		AL Prep:1
WS1	4	1.00	2.00	В	Refer to Logs			19.7	100	47	17	30		AL Prep:1
WS1	5	2.00	3.00	В	Refer to Logs			23.5	100	35	16	19		AL Prep:1
WS2	4	1.00	3.00	В	Refer to Logs			23.0	100	36	16	20		AL Prep:1
WS2	5	3.00	4.30	В	Refer to Logs			22.2	100	31	16	15		AL Prep:1
WS3	4	1.30	3.00	В	Refer to Logs			21.5	100	42	16	26		AL Prep:1
WS3	5	3.00	4.30	В	Refer to Logs			24.2	100	31	16	15		AL Prep:1
WS4	4	1.00	3.00	В	Refer to Logs			24.2	100	47	17	30		AL Prep:1
WS5	4	0.90	3.00	В	Refer to Logs			19.2	100	26	14	12		AL Prep:1
WS6	4	0.85	2.00	В	Refer to Logs			28.6	100	68	32	36		AL Prep:1
All tests perform	med i	n accord	ance wit	h BS1	377:1990 unless specified	otherwise	e	-	-		-	-	-	
Key						<u>, , , , , , , , , , , , , , , , , , , </u>		Date F	Printed		Appr	oved	Ву	Table
Density test Linear measuremen unless	t	Liquid Lim 4pt cone u	it inless :		Atterberg Prep 1. in natural condition	Particle de sp - small (nsity pyknom	2	29/04/20	21				1
wd - water displacer wi - immersion in w	ment ater	cas - Casa 1pt - single	agrande me e point test	thod	 after >425um removed by hand after washing to remove >425um 	gj - gas jar					Li	sa M	aiden	sheet 1

07 001 PrIVersion: v8 07 | Graph L - PSD - A4P | 750049.GPJ - v10 01. 5: 1ā Princess Street, Bedminster, Bristol, BS3 44G. Tei: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 04/05/21 - 12:09 | AF3 | GINT_LIBRARY_V10_01.GLB LibVersion: v8_0 Structural Soils Ltd, Branch Office - Bristol Lab:

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 21/04194 1

Date: 05 May, 2021

Client:

CJ Associates (Bridgend) Unit 1-3, Block 6, Newlands Avenue Brackla Industrial Estate Bridgend Mid Glamorgan CF31 2DA

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Admin/Lisa Maiden Cowbridge Primary School 2071724-L14879-S8419 N/A 21/04/21 21/04/21 04/05/21

Prepared by:

Approved by:

Manshall

Melanie Marshall Laboratory Coordinator

nce

Sophie France Client Service Manager

Client Project Name: Cowbridge Primary School

Client Project Ref: 2071724-L14879-S8419

Lab Sample ID	21/04194/1	21/04194/2	21/04194/3	21/04194/4	21/04194/5				
Client Sample No	4	4	4	4	4				
Client Sample ID	WS1	WS2	WS3	WS5	WS6				
Depth to Top	1.00	1.00	1.30	0.90	0.85				
Depth To Bottom	2.00	3.00	3.00	3.00	2.00			io	
Date Sampled								etect	jt
Sample Type	Soil - B			t of D	od re				
Sample Matrix Code	3A	3AE	3A	3A	3A		Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	0.8		% w/w	0.1	A-T-044
pH₀ ^{M#}	7.76	8.31	7.97	7.94	6.65		рН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	0.02	<0.01	<0.01	0.02	0.02		g/l	0.01	A-T-026s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected

may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliguot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	CJ Associates (Bridgend), Unit 1-3, Block 6, Newlands Avenue, Brackla
	Industrial Estate, Bridgend, Mid Glamorgan, CF31 2DA

 Project No:
 21/04194

 Date Received:
 21/04/2021 (am)

 Cool Box Temperatures (°C):
 10.6

Project:Cowbridge Primary SchoolClients Project No:2071724-L14879-S8419

Lab Sample ID	21/04194/1	21/04194/2	21/04194/3	21/04194/4	21/04194/5
Client Sample No	4	4	4	4	4
Client Sample ID/Depth	WS1 1.00- 2.00m	WS2 1.00- 3.00m	WS3 1.30- 3.00m	WS5 0.90- 3.00m	WS6 0.85- 2.00m
Date Sampled					
Deviation Code					
E (no date)	✓	✓	~	✓	✓

Key

E (no date)

No sampling date provided (all results affected if not provided)

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 21/03915 1

Date: 28 April, 2021

Client:

CJ Associates Portview Road Avonmouth Bristol BS11 9JE

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Admin/Aled Henry (Based Bringend) Cowbridge Primary School 2071724 N/A 09/04/21 15/04/21 27/04/21

Prepared by:

Approved by:

Manshall

Melanie Marshall Laboratory Coordinator

nce

Sophie France Client Service Manager

Client Project Name: Cowbridge Primary School

								-
Lab Sample ID	21/03915/3	21/03915/5	21/03915/6	21/03915/12				
Client Sample No								
Client Sample ID	TP2	TP3	TP3	TP6				
Depth to Top	0.60	0.50	1.30	0.80				
Depth To Bottom							u	
Date Sampled	07-Apr-21	07-Apr-21	07-Apr-21	07-Apr-21			etecti	
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES			of De	od re
Sample Matrix Code	6AE	3A	6AE	6AE		Units	Limit	Metho
% Stones >10mm _A	2.9	16.4	<0.1	1.5		% w/w	0.1	A-T-044
pH _D ^{M#}	7.87	8.27	7.14	8.02		pН	0.01	A-T-031s
Sulphate (acid soluble) ₀ ^{M#}	<200	<200	800	530		mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1		mg/kg	1	A-T-042sFCN
Cyanide (total)₄ ^{M#}	<1	<1	<1	<1		mg/kg	1	A-T-042sTCN
Thiocyanate₄	<5	<5	9	<5		mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2		mg/kg	0.2	A-T-050s
Sulphide₄	<5	<5	<5	<5		mg/kg	5	A-T-S2-s
Sulphur (elemental) _D ^{M#}	<5	<5	<5	<5		mg/kg	5	A-T-029s
Organic matter _D ^{M#}	0.8	3.1	10.2	20.4		% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	5	3	4	4		mg/kg	1	A-T-024s
Beryllium _p #	0.8	0.8	0.7	0.6		mg/kg	0.5	A-T-024s
Boron (water soluble) _D	<1.0	<1.0	<1.0	<1.0		mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.9	0.7	0.8	0.6		mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	9	13	17		mg/kg	1	A-T-024s
Chromium _D ^{M#}	25	21	24	19		mg/kg	1	A-T-024s
Chromium (hexavalent)⊳	<1	<1	<1	<1		mg/kg	1	A-T-040s
Lead _D ^{M#}	89	39	80	50		mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17		mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	23	20	18	24		mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1		mg/kg	1	A-T-024s
Vanadium _D ^{M#}	30	23	31	25		mg/kg	1	A-T-024s
Zinc _D ^{M#}	100	64	98	75		mg/kg	5	A-T-024s
TPH total (>C6-C40) _A ^{M#}	<10	-	-	-		mg/kg	10	A-T-007s

Client Project Name: Cowbridge Primary School

Lab Sample ID	21/03915/3	21/03915/5	21/03915/6	21/03915/12				
Client Sample No								
Client Sample ID	TP2	TP3	TP3	TP6				
Depth to Top	0.60	0.50	1.30	0.80				
Depth To Bottom							ion	
Date Sampled	07-Apr-21	07-Apr-21	07-Apr-21	07-Apr-21			etect	f
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES			t of D	od re
Sample Matrix Code	6AE	3A	6AE	6AE		Units	Limit	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _D #	NAD	NAD	NAD	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A				A-T-045

Client Project Name: Cowbridge Primary School

Lab Sample ID	21/03915/3	21/03915/5	21/03915/6	21/03915/12				
Client Sample No								
Client Sample ID	TP2	TP3	TP3	TP6				
Depth to Top	0.60	0.50	1.30	0.80				
Depth To Bottom							io	
Date Sampled	07-Apr-21	07-Apr-21	07-Apr-21	07-Apr-21			etect	ž
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES			t of D	od re
Sample Matrix Code	6AE	3A	6AE	6AE		Units	Limi	Meth
PAH-16MS								
Acenaphthene₄ ^{M#}	<0.01	<0.01	<0.01	0.01		mg/kg	0.01	A-T-019s
Acenaphthylene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02		mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{AM#}	<0.04	0.09	<0.04	<0.04		mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	0.07	<0.04	<0.04		mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene ^{AM#}	<0.05	0.09	<0.05	0.06		mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05		mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07		mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	0.10	<0.06	0.08		mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04		mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.17	<0.08	0.11		mg/kg	0.08	A-T-019s
Fluorene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03	<0.03	<0.03	<0.03		mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03		mg/kg	0.03	A-T-019s
Phenanthrene ₄ ^{M#}	<0.03	0.08	<0.03	0.08		mg/kg	0.03	A-T-019s
Pyrene ^{AM#}	<0.07	0.12	<0.07	<0.07		mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	0.72	<0.08	0.34		mg/kg	0.01	A-T-019s

Client Project Name: Cowbridge Primary School

Lab Sample ID	21/03915/3	21/03015/5	21/03915/6	21/03015/12				
	21/03913/3	21/03913/3	21/03913/0	21/03913/12				
Client Sample No								
Client Sample ID	TP2	TP3	TP3	TP6				
Depth to Top	0.60	0.50	1.30	0.80				
Depth To Bottom							<u>io</u>	
Date Sampled	07-Apr-21	07-Apr-21	07-Apr-21	07-Apr-21			etect	يد ا
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES			t of D	od re
Sample Matrix Code	6AE	3A	6AE	6AE		Units	Limit	Meth
TPH CWG								
Ali >C5-C6 ₄ #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
Ali >C6-C8₄ [#]	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
Ali >C8-C10₄	-	<1	<1	<1		mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	<1	<1	<1		mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	<1	<1	1		mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	<1	7	3		mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	-	2	68	18		mg/kg	1	A-T-055s
Total Aliphatics _A	-	2	74	21		mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	<1	<1	1		mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	<1	<1	<1		mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	<1	<1	3		mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	-	<1	8	4		mg/kg	1	A-T-055s
Aro >C21-C35 ^{AM#}	-	3	42	30		mg/kg	1	A-T-055s
Total Aromatics _A	-	3	50	38		mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)₄	-	4	125	59		mg/kg	1	A-T-055s
BTEX - Benzene [#]	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	<0.02	<0.02	<0.02		mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s
MTBE _A #	-	<0.01	<0.01	<0.01		mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Kev:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:

CJ Associates, Portview Road, Avonmouth, Bristol, BS11 9JE

Project No:	21/03915
Date Received:	15/04/2021 (am)
Cool Box Temperatures (°C):	7.2 & 7.8

Project: Cowbridge Primary School Clients Project No: 2071724

Lab Sample ID	21/03915/3	21/03915/5	21/03915/6	21/03915/12
Client Sample No				
Client Sample ID/Depth	TP2 0.60m	TP3 0.50m	TP3 1.30m	TP6 0.80m
Date Sampled	07/04/21	07/04/21	07/04/21	07/04/21
Deviation Code				
F	✓	✓	✓	✓

Key F

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	21/03915/3	21/03915/5	21/03915/6	21/03915/12
Client Sample No				
Client Sample ID/Depth	TP2 0.60m	TP3 0.50m	TP3 1.30m	TP6 0.80m
Date Sampled	07/04/21	07/04/21	07/04/21	07/04/21
Cyanide (free)	~	✓	~	✓
Cyanide (total)	✓	✓	✓	✓
Sulphide	\checkmark	\checkmark	\checkmark	\checkmark

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 21/03916 1

Date: 28 April, 2021

Client:

CJ Associates (Bridgend) Unit 1-3, Block 6, Newlands Avenue Brackla Industrial Estate Bridgend Mid Glamorgan CF31 2DA

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Admin/Aled Henry Cowbridge Primary School 2071724 N/A 14/04/21 15/04/21 27/04/21

Prepared by:

Approved by:

Manshall

Melanie Marshall Laboratory Coordinator

nce

Sophie France Client Service Manager

Client Project Name: Cowbridge Primary School

Client Project Ref: 20/1/24	Client	Project	Ref:	2071724
-----------------------------	--------	---------	------	---------

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6					
Client Sample No								
Client Sample ID	WS1	WS3	WS6					
Depth to Top	0.50	0.50	0.40					
Depth To Bottom							u	
Date Sampled	12-Apr-21	12-Apr-21	12-Apr-21				etecti	÷
Sample Type	Soil - ES	Soil - ES	Soil - ES				of D	od re
Sample Matrix Code	6AE	3A	6ABE			Units	Limit	Meth
% Stones >10mm _A	34.0	<0.1	17.1			% w/w	0.1	A-T-044
pH _D ^{M#}	9.02	8.22	8.20			рН	0.01	A-T-031s
Sulphate (acid soluble) _D ^{M#}	500	<200	330			mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1			mg/kg	1	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1	<1			mg/kg	1	A-T-042sTCN
Thiocyanate _A	<5	<5	<5			mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2			mg/kg	0.2	A-T-050s
Sulphide _A	76	100	60			mg/kg	5	A-T-S2-s
Sulphur (elemental) _D ^{M#}	<5	<5	<5			mg/kg	5	A-T-029s
Organic matter ^{D^{M#}}	7.4	0.5	13.1			% w/w	0.1	A-T-032 OM
Arsenic _o ^{M#}	2	3	5			mg/kg	1	A-T-024s
Beryllium _⊳ #	<0.5	0.6	<0.5			mg/kg	0.5	A-T-024s
Boron (water soluble) _D	<1.0	<1.0	1.1			mg/kg	1	A-T-027s
Cadmium _⊳ ^{M#}	<0.5	0.7	<0.5			mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	9	17			mg/kg	1	A-T-024s
Chromium _D ^{M#}	14	23	12			mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	<1	<1			mg/kg	1	A-T-040s
Lead _D ^{M#}	18	57	35			mg/kg	1	A-T-024s
Mercury _D	0.20	<0.17	0.37			mg/kg	0.17	A-T-024s
Nickel ^{d^{M#}}	13	22	19			mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1			mg/kg	1	A-T-024s
Vanadium _D ^{M#}	17	24	17			mg/kg	1	A-T-024s
Zinc _D ^{M#}	38	86	50			mg/kg	5	A-T-024s
TPH total (>C6-C40) _A ^{M#}	41	<10	-			mg/kg	10	A-T-007s

Client Project Name: Cowbridge Primary School

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6					
Client Sample No								
Client Sample ID	WS1	WS3	WS6					
Depth to Top	0.50	0.50	0.40					
Depth To Bottom							<u>io</u>	
Date Sampled	12-Apr-21	12-Apr-21	12-Apr-21				etect	<u>ب</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES				ofD	od re
Sample Matrix Code	6AE	3A	6ABE			Units	Limit	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _D #	NAD	NAD	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test?p	N/A	N/A	N/A					A-T-045

Client Project Name: Cowbridge Primary School

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6					
Client Sample No								
Client Sample ID	WS1	WS3	WS6					
Depth to Top	0.50	0.50	0.40					
Depth To Bottom							<u>u</u>	
Date Sampled	12-Apr-21	12-Apr-21	12-Apr-21				etect	ų
Sample Type	Soil - ES	Soil - ES	Soil - ES				of	od re
Sample Matrix Code	6AE	3A	6ABE			Units	Limit	Meth
PAH-16MS								
Acenaphthene _A ^{M#}	0.04	<0.01	0.01			mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01			mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.08	<0.02	<0.02			mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{M#}	0.30	0.06	0.13			mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	0.18	<0.04	0.14			mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.26	<0.05	0.18			mg/kg	0.05	A-T-019s
Benzo(ghi)perylene ^{, M#}	0.08	<0.05	0.07			mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.09	<0.07	0.08			mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.30	<0.06	0.18			mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04			mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.54	<0.08	0.22			mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	0.04	<0.01	0.01			mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.10	<0.03	0.08			mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03			mg/kg	0.03	A-T-019s
Phenanthrene ₄ ^{M#}	0.31	<0.03	0.09			mg/kg	0.03	A-T-019s
Pyrene ^{A^{M#}}	0.38	<0.07	0.18			mg/kg	0.07	A-T-019s
Total PAH-16MS ^{AM#}	2.70	<0.08	1.37			mg/kg	0.01	A-T-019s

Client Project Name: Cowbridge Primary School

Client Project Ref: 20/1/24	Client	Project	Ref:	2071724
-----------------------------	--------	---------	------	---------

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6					
Client Sample No								
Client Sample ID	WS1	WS3	WS6					
Depth to Top	0.50	0.50	0.40					
Depth To Bottom							ы	
Date Sampled	12-Apr-21	12-Apr-21	12-Apr-21				stecti	
Sample Type	Soil - ES	Soil - ES	Soil - ES				of De	od rei
Sample Matrix Code	6AE	3A	6ABE			Units	Limit	Metho
TPH CWG								
Ali >C5-C6 _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	<1			mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	-	<1			mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	-	3			mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	-	5			mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	-	-	18			mg/kg	1	A-T-055s
Total Aliphatics _A	-	-	26			mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	-	<1			mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	<1			mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	-	3			mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	-	4			mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	-	-	14			mg/kg	1	A-T-055s
Total Aromatics _A	-	-	22			mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)₄	-	-	48			mg/kg	1	A-T-055s
BTEX - Benzene₄ [#]	-	-	<0.01			mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	<0.01			mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	0.04			mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	0.01			mg/kg	0.01	A-T-022s
MTBE _A #	-	-	<0.01	 		mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Kev:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	CJ Associates (Bridgend), Unit 1-3, Block 6, Newlands Avenue, Brackla	Project No:	21/03916
	Industrial Estate, Bridgend, Mid Glamorgan, CF31 2DA	Date Received:	15/04/2021 (am)
Project:	Cowbridge Primary School	Cool Box Temperatures (°C):	7.2

Clients Project No: 2071724

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6
Client Sample No			
Client Sample ID/Depth	WS1 0.50m	WS3 0.50m	WS6 0.40m
Date Sampled	12/04/21	12/04/21	12/04/21
Deviation Code			
F	✓	✓	✓

Key F

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	21/03916/1	21/03916/3	21/03916/6
Client Sample No			
Client Sample ID/Depth	WS1 0.50m	WS3 0.50m	WS6 0.40m
Date Sampled	12/04/21	12/04/21	12/04/21
Sulphide	~	~	~

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

DRAWINGS

