

Appendix V

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 23-31663-2

Initial Date of Issue: 29-Sep-2023 Date of Re-Issue: 05-Oct-2023

Re-Issue Details:

This report has been revised and directly

supersedes 23-31663-1 in its entirety

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 21-Sep-2023

Order No.: SC14805 Date Instructed: 29-Sep-2023

No. of Samples: 17

Turnaround (Wkdays): 5 Results Due: 05-Oct-2023

Date Approved: 05-Oct-2023 Subcon Results Due: 05-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Project: C3297 Barry Waterfront Colleg	<u>ue</u>											
Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791	(Chemte	st Sam	ple ID.:	1705625	1705627	1705628	1705630	1705632	1705634	1705635	1705636
Order No.: SC14805		Clie	nt Samp	ole Ref.:	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
		Sa	ample L	ocation:	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.15	0.90	1.10	2.20	3.10	0.25	1.00	1.10
		Bo	ttom De	pth (m):	2.00	1.00	1.20	2.30	3.20	0.35	1.20	1.30
			Date Sa	ampled:	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-202
			Asbest	tos Lab:	DURHAM	·	DURHAM	·	·	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	-		Fibres/Clumps			-	Fibres/Clumps	
Asbestos Identification	U	2192		N/A	No Asbestos Detected		Amosite			No Asbestos Detected	Chrysotile	
Asbestos by Gravimetry	U	2192	%	0.001			0.001				0.001	
Total Asbestos	U	2192	%	0.001			0.001				0.001	
Moisture	N	2030	%	0.020	15	9.8	10	11	11	7.6	11	9.5
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
pH at 20C	U	2010		4.0	8.6		8.3	8.4		8.2	8.5	
pH (2.5:1) at 20C	N	2010		4.0		8.5			8.6			8.6
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	2.1		3.1	4.5		0.48	1.9	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		< 0.010			< 0.010			< 0.010
Total Sulphur	U	2175	%	0.010		0.079			0.073			0.14
Sulphur (Elemental)	U	2180	mg/kg	1.0	1.5						8.6	
Chloride (Water Soluble)	Ü	2220	g/l	0.010	< 0.010						< 0.010	
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50		< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	3.6						5.5	
Sulphate (Acid Soluble)	Ü	2430	%	0.010		0.14			0.11			0.067
Arsenic	Ü	2455	mg/kg	0.5	12	277.7	10	5.4		15	11	
Beryllium	Ü	2455	mg/kg	0.5	0.8		0.8	< 0.5		0.7	0.5	
Cadmium	Ü	2455	mg/kg	0.10	0.62		0.53	0.29		0.48	0.63	
Chromium	Ü	2455	mg/kg	0.5	240		61	16		30	35	
Antimony	N	2455	mg/kg	2.0	< 2.0		< 2.0	< 2.0		< 2.0	6.4	
Copper	U	2455	mg/kg	0.50	67		51	30		94	69	
Mercury	Ü	2455	mg/kg	0.05	0.14		0.30	0.07		0.73	0.32	
Nickel	Ü	2455	mg/kg	0.50	28		23	15		24	19	
Lead	U	2455	mg/kg	0.50	72		82	73		110	250	
Selenium	U	2455	mg/kg	0.30	0.88		0.78	0.46		0.76	0.58	
Vanadium	U	2455	mg/kg	0.23	60		33	13		25	20	
Zinc	U	2455	mg/kg	0.50	240		190	78		290	250	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		180	10		290	< 0.50	
Aliphatic VPH >C5-C6	U	2780		0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
-	U	_	mg/kg	-	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C6-C7	U	2780 2780	mg/kg	0.05								
Aliphatic VPH > C7-C8			mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10	

Client: HSP Consulting Engineers												
Limited		Che	mtest J	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791	(Chemte	st Sam	ple ID.:	1705625	1705627	1705628	1705630	1705632	1705634	1705635	1705636
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
		Sa	ample Lo	ocation:	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
			Sampl	е Туре:	SOIL							
			Top De	pth (m):	0.15	0.90	1.10	2.20	3.10	0.25	1.00	1.10
		Bot	tom De	pth (m):	2.00	1.00	1.20	2.30	3.20	0.35	1.20	1.30
			Date Sa		18-Sep-2023							
			Asbest	os Lab:	DURHAM		DURHAM	·		DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD								
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25		< 0.25	< 0.25		< 0.25	< 0.25	
Aliphatic EPH >C10-C12	U	2690	mg/kg	2.00	3.9		4.0	< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C12-C16	U	2690	mg/kg	1.00	2.5		2.1	< 1.0		< 1.0	< 1.0	
Aliphatic EPH >C16-C21	U	2690	mg/kg	2.00	< 2.0		< 2.0	< 2.0		< 2.0	9.5	
Aliphatic EPH >C21-C35	U	2690	mg/kg	3.00	18		< 3.0	< 3.0		< 3.0	< 3.0	
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00	13		< 10	< 10		< 10	< 10	
Total Aliphatic EPH >C10-C35	U	2690	mg/kg	5.00	26		8.4	< 5.0		< 5.0	13	
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	39		< 10	< 10		< 10	13	
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25		< 0.25	< 0.25		< 0.25	< 0.25	
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00	6.9		8.0	4.8		5.9	28	
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00	6.1		220	4.3		15	97	
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	8.7		75	< 1.0		< 1.0	35	
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00	13		230	9.1		21	120	
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	22		310	< 10		21	160	
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50		< 0.50	< 0.50		< 0.50	< 0.50	
Total EPH >C10-C35	U	2690	mg/kg	10.00	39		240	12		21	140	
Total EPH >C10-C40	N	2690	mg/kg	10.00	60		320	12		21	170	
LOI	U	2610	%	0.10	3.8						8.5	
Total Organic Carbon	U	2625	%	0.20	2.1		3.4	3.2		7.8	13	
Benzene	U	2760	μg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
o-Xylene	Ū	2760	μg/kg	1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Naphthalene	Ü	2800	mg/kg	0.10	< 0.10		0.20	0.16		0.19	0.38	
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10		0.21	0.16		< 0.10	0.17	
Acenaphthene	U	2800	mg/kg	0.10	< 0.10		0.30	< 0.10		0.11	< 0.10	
Fluorene	Ü	2800	mg/kg	0.10	< 0.10		0.40	< 0.10		< 0.10	< 0.10	
Phenanthrene	Ü	2800	mg/kg	0.10	0.45		6.1	0.81		1.0	1.1	
Anthracene	Ü	2800	mg/kg	0.10	0.16		1.8	0.19		0.24	0.58	
			J''J									

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791	(Chemte	st Sam	ple ID.:	1705625	1705627	1705628	1705630	1705632	1705634	1705635	1705636
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
		S	ample Lo		TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06
			Sampl	е Туре:	SOIL							
			Top De	. ,	0.15	0.90	1.10	2.20	3.10	0.25	1.00	1.10
		Bo	ttom De _l			1.00	1.20	2.30	3.20	0.35	1.20	1.30
			Date Sa	ampled:	18-Sep-2023							
			Asbest	os Lab:	DURHAM		DURHAM			DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD								
Fluoranthene	U	2800	mg/kg	0.10	0.94		9.0	1.4		2.0	3.3	
Pyrene	U	2800	mg/kg	0.10	0.74		6.8	1.2		1.5	2.9	
Benzo[a]anthracene	U	2800	mg/kg	0.10	0.60		4.4	0.71		1.1	2.4	
Chrysene	U	2800	mg/kg	0.10	0.55		4.8	0.99		1.4	2.3	
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	0.83		6.8	1.5		2.0	4.1	
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	0.32		2.5	0.60		0.65	1.4	
Benzo[a]pyrene	U	2800	mg/kg	0.10	0.64		4.8	0.92		1.4	3.5	
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	0.46		3.0	0.78		1.1	2.2	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10		0.78	0.21		0.29	0.67	
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	0.38		2.9	0.80		1.1	2.1	
Total Of 16 PAH's	N	2800	mg/kg	2.0	6.1		55	10		14	27	
PCB 28	U	2815	mg/kg		< 0.010		< 0.010			< 0.010		
PCB 52	U	2815	mg/kg		< 0.010		< 0.010			< 0.010		
PCB 90+101	U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010		
PCB 118	U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010		
PCB 153	U	2815	mg/kg		< 0.010		< 0.010			< 0.010		
PCB 138	U	2815	mg/kg		< 0.010		< 0.010			< 0.010		
PCB 180	U	2815	mg/kg	0.010	< 0.010		< 0.010			< 0.010		
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10	< 0.10		< 0.10			< 0.10		
Total Phenols	U	2920	mg/kg	0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10	

Project: C3297 Barry Waterfront College	2												
Client: HSP Consulting Engineers Limited		Cher	ntest J	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791		Chemte	st Sam	ple ID.:	1705637	1705642	1705643	1705644	1705648	1705650	1705652	1705653	1705657
Order No.: SC14805			nt Samp	-	TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	
			ample Lo		TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP08
				е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		2.00	1.10	2.00	2.10	0.25	1.15	2.20	2.90	1.00
			tom De		2.20	1.30	2.20	2.30	0.45	1.35	2.40	3.00	
			Date Sa		18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023
			Asbest	_	DURHAM	DURHAM	. 0 0 op 2020	.0 0 op 2020	DURHAM	.0 000 2020	DURHAM	. o o o p 2020	.0 000 2020
Determinand	Accred.	SOP	Units		2014.24.0	20.4.2.4			2011111111		20111111111		
ACM Type	U	2192	C 1111C	N/A	-	-			-		-		
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		
Asbestos by Gravimetry	U	2192	%	0.001	Botottoa	Dotoctou			Dotoctou		Dotoctou		
Total Asbestos	Ü	2192	%	0.001									
Moisture	N	2030	%	0.020	12	16	13	11	9.1	9.1	22	11	11
Soil Colour	N	2040	70	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	11
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones	
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	
pH at 20C	U	2010		4.0	8.5	8.4	Caria	8.2	8.2	Oand	8.5	8.6	
pH (2.5:1) at 20C	N	2010		4.0	0.0	0.4	8.5	0.2	0.2	8.6	0.5	0.0	8.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.2	0.98	0.0	0.82	< 0.40	0.0	0.92	2.9	0.0
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.40	1.2	0.90	< 0.010	0.02	\ 0.40	< 0.010	0.92	2.9	0.057
Total Sulphur	U	2175	% %	0.010			0.42			0.14			0.53
Sulphur (Elemental)	U	2180	mg/kg	1.0			0.42			0.14	1.2		0.55
Chloride (Water Soluble)	U	2220	a/l	0.010							< 0.010		
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50		< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	\ 0.50	\ 0.30		\ 0.30	\ 0.30		3.0	< 0.50	
Sulphate (Acid Soluble)	U	2430	mg/kg %	0.010			0.040			0.073	3.0		0.077
Arsenic	U	2455	mg/kg	0.010	17	6.5	0.040	7.7	8.2	0.073	6.3	13	0.077
Beryllium	U	2455		0.5	0.9	1.0		0.8	0.5		< 0.5	0.8	
Cadmium	U	2455	mg/kg mg/kg	0.10	0.9	0.18		0.18	0.38		0.17	0.66	
Chromium	U	2455	mg/kg	0.10	25	27		19	16		8.9	23	
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0		< 2.0	< 2.0		< 2.0	< 2.0	
	U	2455	mg/kg	0.50	21	29		31	44		57	26	
Copper Mercury	U	2455	mg/kg	0.50	< 0.05	0.09		1.2	1.6		0.26	0.09	
Nickel	U	2455	mg/kg	0.05	31	35		32	1.6		14	33	
Lead	U	2455	mg/kg mg/kg	0.50	58	11		50	66		46	56	
Selenium	U	2455	mg/kg mg/kg	0.50	0.59	0.75		0.73	0.59		0.40	0.72	
Vanadium	U	2455	mg/kg	0.25	23	21		16	17		11	22	
Zinc	U	2455	mg/kg	0.50	150	56		61	160		74	160	
	N				100	50		< 0.50	100		< 0.50	100	
Chromium (Hexavalent) Aliphatic VPH >C5-C6	U	2490 2780	mg/kg mg/kg	0.50	< 0.05	< 0.05		< 0.50	< 0.0F		< 0.50	< 0.05	
·									< 0.05				
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05 < 0.05	< 0.05	
Aliphatic VPH > C7-C8		2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05			< 0.05	
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10	

Project: C3297 Barry Waterfront College	2												
Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791		Chemte	st Sam	ple ID.:	1705637	1705642	1705643	1705644	1705648	1705650	1705652	1705653	1705657
Order No.: SC14805			nt Samp	-	TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	
		Sa	ample L	ocation:	TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP08
			•	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		2.00	1.10	2.00	2.10	0.25	1.15	2.20	2.90	1.00
			ttom De		2.20	1.30	2.20	2.30	0.45	1.35	2.40	3.00	1100
			Date Sa	. ,	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023
				os Lab:	DURHAM	DURHAM			DURHAM		DURHAM		
Determinand	Accred.	SOP	Units										
Aliphatic VPH >C8-C10	U	2780	mg/kg	_	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aliphatic VPH >C5-C10	Ü	2780	mg/kg		< 0.25	< 0.25		< 0.25	< 0.25		< 0.25	< 0.25	
Aliphatic EPH >C10-C12	Ü	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0	< 2.0		< 2.0	< 2.0	
Aliphatic EPH >C12-C16	Ü	2690	mg/kg		< 1.0	< 1.0		1.5	< 1.0		< 1.0	< 1.0	
Aliphatic EPH >C16-C21	U	2690	mg/kg	2.00	< 2.0	< 2.0		2.6	< 2.0		5.3	< 2.0	
Aliphatic EPH >C21-C35	U	2690	mg/kg	3.00	< 3.0	< 3.0		3.7	< 3.0		6.3	< 3.0	
Aliphatic EPH >C35-C40	N	2690	mg/kg		< 10	< 10		< 10	< 10		< 10	< 10	
Total Aliphatic EPH >C10-C35	U	2690	mg/kg		< 5.0	< 5.0		7.8	< 5.0		12	< 5.0	
Total Aliphatic EPH >C10-C40	N	2690	mg/kg		< 10	< 10		< 10	< 10		12	< 10	
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C3-C7 Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic VPH >C7-C6 Aromatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Total Aromatic VPH >C5-C10	U	2780	mg/kg		< 0.05	< 0.05		< 0.05	< 0.05		< 0.05	< 0.05	
Aromatic EPH >C10-C12	U	2690		1.00	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Aromatic EPH >C10-C12	U	2690	mg/kg mg/kg		< 1.0	< 1.0		< 1.0	< 1.0		12	< 1.0	
Aromatic EPH >C12-C16 Aromatic EPH >C16-C21	U	2690			3.6	3.4		12	4.0		220	3.5	
Aromatic EPH >C16-C21	U	2690	mg/kg mg/kg		2.4	< 2.0		70	17		380	< 2.0	
Aromatic EPH >C35-C40	N	2690			< 1.0	< 1.0		2.3	< 1.0		16	< 1.0	
	U		mg/kg		6.0	5.1		82			610	_	
Total Aromatic EPH > C10-C35	N	2690	mg/kg	5.00	< 10	5. I < 10		85 85	21 21		630	< 5.0 < 10	<u> </u>
Total Aromatic EPH >C10-C40		2690	mg/kg										
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50 90	< 0.50 23		< 0.50 620	< 0.50	
Total EPH >C10-C35	_	2690	mg/kg		< 10	< 10 < 10						< 10	<u> </u>
Total EPH >C10-C40	N	2690	mg/kg		< 10	< 10		93	23		640	< 10	
LOI	U	2610	%	0.10	4.0	0.00		0.00	7.4		7.9	0.04	
Total Organic Carbon	U	2625	%	0.20	1.3	0.29		0.82	7.1		19	0.91	
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	<u> </u>
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	-
Naphthalene	U	2800	mg/kg		< 0.10	< 0.10		< 0.10	0.31		< 0.10	< 0.10	
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10		0.13	0.14		< 0.10	< 0.10	ļ
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10		0.75	0.13		< 0.10	< 0.10	
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10		0.68	0.12		< 0.10	< 0.10	
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10		3.4	1.1		0.35	0.22	
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10		0.64	0.30		0.11	< 0.10	

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663	23-31663
Quotation No.: Q23-31791	(Chemte	est Sam	ple ID.:	1705637	1705642	1705643	1705644	1705648	1705650	1705652	1705653	1705657
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	
		Sa	ample Lo		TP06	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP08
				e Type:	SOIL								
			Top Dep	oth (m):	2.00	1.10	2.00	2.10	0.25	1.15	2.20	2.90	1.00
		Bo	ttom Dep	oth (m):	2.20	1.30	2.20	2.30	0.45	1.35	2.40	3.00	
			Date Sa	_	18-Sep-2023								
			Asbest	os Lab:	DURHAM	DURHAM			DURHAM		DURHAM		
Determinand	Accred.	SOP	Units	_									
Fluoranthene	U	2800	mg/kg		< 0.10	< 0.10		4.9	3.0		1.6	0.60	
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10		3.2	2.5		1.4	0.52	
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10		2.5	2.0		0.92	0.37	
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10		2.5	2.3		0.89	0.39	
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10		3.6	4.1		1.8	0.66	
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10		0.94	1.4		0.65	0.18	
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10		2.3	2.5		1.3	0.38	
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10		1.3	2.2		1.1	0.36	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10		0.53	0.57		0.26	< 0.10	
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10		1.5	2.1		0.88	0.41	
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0		29	25		11	4.1	
PCB 28	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 52	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 90+101	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 118	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 153	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 138	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
PCB 180	U	2815	mg/kg		< 0.010	< 0.010			< 0.010		< 0.010		
Total PCBs (7 Congeners)	U	2815	0 0		< 0.10	< 0.10			< 0.10		< 0.10		
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10		< 0.10	< 0.10	

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH at 20°C	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS

Test Methods

SOP	Title	Parameters included	Method summary
2920	Phenols in Soils by HPLC	Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote:	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 23-32157-2

Initial Date of Issue: 30-Oct-2023 Date of Re-Issue: 30-Oct-2023

Re-Issue Details:

This report has been revised and directly

supersedes 23-32157-1 in its entirety

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 26-Sep-2023

Order No.: SC14805 Date Instructed: 26-Sep-2023

No. of Samples: 11

Turnaround (Wkdays): 5 Results Due: 02-Oct-2023

Date Approved: 30-Oct-2023 Subcon Results Due: 17-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited			Che	ntest Jo	ob No.:	23-32157
Quotation No.: Q23-31791		(Chemte	st Sam	ple ID.:	1707656
Order No.: SC14805			Clie	nt Samp	le Ref.:	TP08
			Sa	ample Lo	ocation:	TP08
					e Type:	SOIL
				Top Dep		2.10
			Bot	tom Dep		2.30
			_	Date Sa	_	20-Sep-2023
Determinand	Accred.	SOP	Туре	Units	LOD	
pH at 20C	U	1010	2:1		N/A	8.3
pH C8 at 20C	U	1010	8:1		N/A	9.1
Ammoniacal Nitrogen	U	1220	2:1	mg/l	0.050	0.10
C8 Ammoniacal Nitrogen	U	1220	8:1	mg/l	0.050	0.071
Cyanide (Total) C8 Cyanide (Total)	U	1300	2:1	mg/l	0.050	< 0.050
Arsenic (Dissolved)	U	1300 1455	8:1 2:1	mg/l	0.050	< 0.050 3.8
C8 Arsenic (Dissolved)	U	1455	8:1	μg/l	0.20	13
Boron (Dissolved)	U	1455	2:1	μg/l μg/l	10.0	49
C8 Boron (Dissolved)	U	1455	8:1	μg/l	10.0	27
Beryllium (Dissolved)	U	1455	2:1	μg/l	1.00	< 1.0
C8 Beryllium (Dissolved)	U	1455	8:1	μg/l	1.00	< 1.0
Cadmium (Dissolved)	U	1455	2:1	μg/l	0.11	< 0.11
C8 Cadmium (Dissolved)	Ü	1455	8:1	μg/l	0.11	< 0.11
Chromium (Dissolved)	Ü	1455	2:1	μg/l	0.50	< 0.50
C8 Chromium (Dissolved)	U	1455	8:1	µg/l	0.50	< 0.50
Copper (Dissolved)	U	1455	2:1	μg/l	0.50	2.7
C8 Copper (Dissolved)	U	1455	8:1	μg/l	0.50	< 0.50
Mercury (Dissolved)	U	1455	2:1	μg/l	0.05	1.3
C8 Mercury (Dissolved)	U	1455	8:1	μg/l	0.05	0.08
Nickel (Dissolved)	U	1455	2:1	μg/l	0.50	< 0.50
C8 Nickel (Dissolved)	U	1455	8:1	μg/l	0.50	< 0.50
Lead (Dissolved)	U	1455	2:1	μg/l	0.50	0.83
C8 Lead (Dissolved)	U	1455	8:1	μg/l	0.50	< 0.50
Antimony (Dissolved)	U	1455	2:1	μg/l	0.50	1.3
C8 Antimony (Dissolved)	U	1455	8:1	μg/l	0.50	1.4
Selenium (Dissolved)	U	1455	2:1	μg/l	0.50	2.0
C8 Selenium (Dissolved)	U	1455	8:1	μg/l	0.50	0.90
Vanadium (Dissolved)	U	1455	2:1	μg/l	0.50	1.5
C8 Vanadium (Dissolved)	U	1455	8:1	μg/l	0.50	3.9
Zinc (Dissolved)	U	1455	2:1	μg/l	2.5	< 2.5
C8 Zinc (Dissolved)	U	1455	8:1	μg/l	2.5	< 2.5
C2 Naphthalene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Acceptables	U	1700	2:1	μg/l	0.10	< 0.10
C2 Acenaphthene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Fluorene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Phenanthrene	U	1700	2:1	μg/l	0.10	5.7

Client: HSP Consulting Engineers Limited			Che	ntest J	ob No.:	23-32157
Quotation No.: Q23-31791		(Chemte	st Sam	ple ID.:	1707656
Order No.: SC14805				nt Samp		TP08
			Sa	ample Lo	ocation:	TP08
					e Type:	SOIL
				Top Dep		2.10
			Bot	tom Dep		2.30
			_	Date Sa	_	20-Sep-2023
Determinand	Accred.	SOP	Туре	Units	LOD	
C2 Anthracene	U	1700	2:1	μg/l	0.10	1.3
C2 Fluoranthene	U	1700	2:1	μg/l	0.10	10
C2 Pyrene	U	1700	2:1	μg/l	0.10	8.9
C2 Benzo[a]anthracene	U	1700	2:1	μg/l	0.10	6.5
C2 Chrysene	N U	1700	2:1	μg/l	0.10	8.8 < 0.10
C2 Benzo[b]fluoranthene	U	1700 1700	2:1 2:1	μg/l	0.10	< 0.10
C2 Benzo[k]fluoranthene C2 Benzo[a]pyrene	U	1700	2:1	μg/l μg/l	0.10	< 0.10
C2 Indeno(1,2,3-c,d)Pyrene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Dibenz(a,h)Anthracene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Benzo[g,h,i]perylene	U	1700	2:1	μg/l	0.10	< 0.10
C2 Total Of 16 PAH's	N	1700	2:1	μg/l	2.0	41
C8 Naphthalene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Acenaphthylene	Ü	1700	8:1	μg/l	0.10	< 0.10
C8 Acenaphthene	Ü	1700	8:1	μg/l	0.10	< 0.10
C8 Fluorene	U	1700	8:1	µg/l	0.10	< 0.10
C8 Phenanthrene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Anthracene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Benzo[a]anthracene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Chrysene	N	1700	8:1	μg/l	0.10	< 0.10
C8 Benzo[b]fluoranthene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Benzo[k]fluoranthene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Benzo[a]pyrene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Indeno(1,2,3-c,d)Pyrene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Dibenz(a,h)Anthracene	U	1700	8:1	μg/l	0.10	< 0.10
C8 Total Of 16 PAH's	N	1700	8:1	μg/l	2.0	< 2.0
Benzene	U	1760	2:1	μg/l	1.0	< 1.0
C8 Benzene	U	1760	8:1	μg/l	1.0	< 1.0
Toluene	U	1760	2:1	μg/l	1.0	< 1.0
C8 Toluene	U	1760	8:1	μg/l	1.0	< 1.0
Ethylbenzene	U	1760	2:1	μg/l	1.0	< 1.0
C8 Ethylbenzene	U	1760	8:1	μg/l	1.0	< 1.0
m & p-Xylene	U	1760	2:1	μg/l	1.0	< 1.0
C8 m & p-Xylene	U	1760	8:1 2:1	μg/l	1.0	< 1.0
o-Xylene C8 o-Xylene	U	1760		μg/l	1.0	< 1.0 < 1.0
Total Phenols	U	1760 1920	8:1 2:1	µg/l	1.0	
Total Prienois	U	1920	Z: I	mg/l	0.030	< 0.030

Client: HSP Consulting Engineers Limited			Chei	ntest Jo	ob No.:	23-32157
Quotation No.: Q23-31791		(Chemte	st Sam	ple ID.:	1707656
Order No.: SC14805			Clie	nt Samp	le Ref.:	TP08
			ocation:	TP08		
	Sample Ty					SOIL
				Top Dep	oth (m):	2.10
			Bot	tom Dep	oth (m):	2.30
				Date Sa	ampled:	20-Sep-2023
Determinand	Accred.	SOP	Type	Units	LOD	
C8 Total Phenols	U	1920	8:1	mg/l	0.030	< 0.030

Client: HSP Consulting Engineers												
Limited		Che	mtest J	ob No.:	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157
Quotation No.: Q23-31791	1 (Chemte	est Sam	ple ID.:	1707629	1707630	1707640	1707642	1707644	1707649	1707650	1707652
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
			ample Lo		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	1.00	1.00	1.00	2.00	3.00	1.00	1.00	2.00
			ttom De		1.20	1.40	1.40	2.40	3.20	1.20	1.40	2.40
			Date Sa	ampled:	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	os Lab:	·	DURHAM	DURHAM	·	DURHAM	<u> </u>	DURHAM	'
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A		-	-		-		Fibres/Clumps	
Asbestos Identification	U	2192		N/A		No Asbestos Detected	No Asbestos Detected		No Asbestos Detected		Chrysotile	
Asbestos by Gravimetry	U	2192	%	0.001							<0.001	
Total Asbestos	U	2192	%	0.001							<0.001	
Moisture	N	2030	%	0.020	19	19	13	14	17	6.2	8.0	8.6
pH at 20C	М	2010		4.0		8.3	8.3		7.8		8.7	8.5
pH (2.5:1) at 20C	N	2010		4.0	8.3			8.5		9.7		
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40		0.40	0.46		0.46		1.3	< 0.40
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.16			0.016		0.15		
Total Sulphur	U	2175	%	0.010	0.10			0.020		0.17		
Sulphur (Elemental)	М	2180	mg/kg	1.0			< 1.0				1.3	
Chloride (Water Soluble)	М	2220	g/l	0.010			< 0.010				< 0.010	
Cyanide (Total)	М	2300	mg/kg	0.50		< 0.50	0.80		8.1		10	0.90
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50			1.8				3.7	
Sulphate (Acid Soluble)	U	2430	%	0.010	0.11			0.048		0.11		
Arsenic	М	2455	mg/kg	0.5		11	3.9		6.4		16	13
Beryllium	U	2455	mg/kg	0.5		1.2	0.9		0.8		5.5	0.6
Cadmium	М	2455	mg/kg	0.10		0.33	< 0.10		< 0.10		0.76	0.29
Chromium	М	2455	mg/kg	0.5		37	24		18		79	18
Antimony	N	2455	mg/kg	2.0		< 2.0	< 2.0		< 2.0		5.5	< 2.0
Copper	М	2455	mg/kg	0.50		53	26		24		2300	35
Mercury	М	2455	mg/kg	0.05		0.28	0.14		0.10		1.1	0.30
Nickel	М	2455	mg/kg	0.50		44	29		23		260	20
Lead	M	2455	mg/kg	0.50		220	43		71		1300	71
Selenium	M	2455	mg/kg	0.25		1.1	0.66		0.64		1.9	0.70
Vanadium	U	2455	mg/kg	0.5		28	15		15		49	21
Zinc	M	2455	mg/kg	0.50		110	67		74		170	150
Chromium (Hexavalent)	N	2490	mg/kg	0.50			< 0.50		< 0.50		< 0.50	
Aliphatic VPH >C5-C6	Ü	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C6-C7	Ü	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C7-C8	Ü	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10		< 0.10	< 0.10		< 0.10	1	< 0.10	< 0.10
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05	 	< 0.05	7.9
Total Aliphatic VPH >C5-C10	Ü	2780	mg/kg	0.25		< 0.25	< 0.25		< 0.25	 	< 0.25	7.9
Aliphatic EPH >C10-C12	M	2690	mg/kg	2.00		< 2.0	< 2.0		< 2.0	 	< 2.0	< 2.0
p			g,g		1			I .		1		

Client: HSP Consulting Engineers		Cho	mtest J	oh No ·	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157
Limited											20-02101	20-32137
Quotation No.: Q23-31791	(st Sam	-	1707629	1707630	1707640	1707642	1707644	1707649	1707650	1707652
Order No.: SC14805			nt Samp		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
		Sa	ample Lo		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
l .				е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		1.00	1.00	1.00	2.00	3.00	1.00	1.00	2.00
		Bot	tom De		1.20	1.40	1.40	2.40	3.20	1.20	1.40	2.40
			Date Sa		21-Sep-2023		21-Sep-2023	21-Sep-2023	21-Sep-2023	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest			DURHAM	DURHAM		DURHAM		DURHAM	
Determinand	Accred.	SOP	Units	_								
Aliphatic EPH >C12-C16	M	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aliphatic EPH >C16-C21	M	2690	mg/kg	2.00		3.4	< 2.0		< 2.0		< 2.0	< 2.0
Aliphatic EPH >C21-C35	M	2690	mg/kg	3.00		5.7	< 3.0		< 3.0		20	< 3.0
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00		< 10	< 10		< 10		< 10	< 10
Total Aliphatic EPH >C10-C35	М	2690	mg/kg	5.00		9.1	< 5.0		< 5.0		21	< 5.0
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00		< 10	< 10		< 10		21	< 10
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05		< 0.05	< 0.05		< 0.05		< 0.05	< 0.05
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25		< 0.25	< 0.25		< 0.25		< 0.25	< 0.25
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00		6.3	11		6.7		18	8.6
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00		< 2.0	< 2.0		< 2.0		120	63
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00		< 1.0	< 1.0		< 1.0		11	7.8
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00		7.9	11		6.7		140	72
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00		< 10	11		< 10		150	80
Total VPH >C5-C10	U	2780	mg/kg	0.50		< 0.50	< 0.50		< 0.50		< 0.50	7.9
Total EPH >C10-C35	U	2690	mg/kg	10.00		17	11		< 10		160	72
Total EPH >C10-C40	N	2690	mg/kg	10.00		17	11		< 10		170	80
LOI	М	2610	%	0.10			2.5				4.6	
Total Organic Carbon	М	2625	%	0.20		0.72	0.22		1.7		4.6	1.6
Dichlorodifluoromethane	U	2760	μg/kg	1.0					< 1.0			
Chloromethane	М	2760	μg/kg	1.0					< 1.0			
Vinyl Chloride	М	2760	μg/kg	1.0					< 1.0			
Bromomethane	М	2760	μg/kg	20					< 20			
Chloroethane	U	2760	μg/kg	2.0					< 2.0			
Trichlorofluoromethane	М	2760	μg/kg	1.0					< 1.0			
1,1-Dichloroethene	М	2760	μg/kg	1.0					< 1.0			
Dichloromethane	N	2760	μg/kg	50					< 50			
Trans 1,2-Dichloroethene	М	2760	μg/kg	1.0					< 1.0			
1,1-Dichloroethane	М	2760	μg/kg	1.0					< 1.0			
cis 1,2-Dichloroethene	М	2760	μg/kg	1.0					< 1.0			
Bromochloromethane	U	2760	μg/kg	5.0					< 5.0			
Trichloromethane	М	2760	μg/kg	1.0					< 1.0			

Client USB Consulting Engineers	<u>40</u>								l			
Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157
Quotation No.: Q23-31791		Chemte	est Sam	ple ID.:	1707629	1707630	1707640	1707642	1707644	1707649	1707650	1707652
Order No.: SC14805			nt Samp		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
		Sa	ample L	ocation:	TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
			Sampl	e Type:	SOIL							
			Top De		1.00	1.00	1.00	2.00	3.00	1.00	1.00	2.00
		Bo	ttom De	pth (m):	1.20	1.40	1.40	2.40	3.20	1.20	1.40	2.40
			Date Sa	ampled:	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	tos Lab:		DURHAM	DURHAM		DURHAM		DURHAM	
Determinand	Accred.	SOP		LOD								
Tetrachloromethane	М	2760	μg/kg	1.0					< 1.0			
1,1-Dichloropropene	U	2760	μg/kg	1.0					< 1.0			
Benzene	М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2-Dichloroethane	М	2760	μg/kg	2.0					< 2.0			
Trichloroethene	N	2760	μg/kg	1.0					< 1.0			
1,2-Dichloropropane	М	2760	μg/kg	1.0					< 1.0			
Dibromomethane	М	2760	µg/kg	1.0				1	< 1.0			
Bromodichloromethane	М	2760	μg/kg	5.0					< 5.0			
cis-1,3-Dichloropropene	N	2760	µg/kg	10					< 10			
Toluene	М	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	μg/kg	10					< 10			
1,1,2-Trichloroethane	M	2760	μg/kg	10					< 10			
Tetrachloroethene	М	2760	µg/kg	1.0					< 1.0		-	
1,3-Dichloropropane	U	2760	µg/kg	2.0					< 2.0			
Dibromochloromethane	Ü	2760	μg/kg	10					< 10			
1.2-Dibromoethane	M	2760	µg/kg	5.0					< 5.0			
Chlorobenzene	M	2760	μg/kg	1.0					< 1.0			
1,1,1,2-Tetrachloroethane	M	2760	μg/kg	2.0					< 2.0			
Ethylbenzene	M	2760	µg/kg	1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
m & p-Xylene	M	2760	μg/kg	1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
o-Xylene	M	2760	µg/kg	1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Styrene	M	2760	µg/kg	1.0		1.0	1.0		< 1.0		1.0	1.0
Tribromomethane	U	2760	µg/kg	1.0					< 1.0			
Isopropylbenzene	M	2760	μg/kg	1.0					< 1.0			
Bromobenzene	M	2760	μg/kg	1.0					< 1.0			
1,2,3-Trichloropropane	N	2760	μg/kg	50					< 50			
N-Propylbenzene	U	2760	μg/kg	1.0					< 1.0			
2-Chlorotoluene	M	2760	μg/kg μg/kg	1.0					< 1.0			
1,3,5-Trimethylbenzene	M	2760	μg/kg	1.0					< 1.0			
4-Chlorotoluene	U	2760	μg/kg μg/kg	1.0					< 1.0			
Tert-Butylbenzene	U	2760	100	1.0					< 1.0			
·	M	2760		1.0					< 1.0			
1,2,4-Trimethylbenzene	U	2760	μg/kg	1.0					< 1.0			
Sec-Butylbenzene	M		μg/kg									
1,3-Dichlorobenzene	U	2760	μg/kg	1.0					< 1.0			
4-Isopropyltoluene		2760	μg/kg	1.0					< 1.0			
1,4-Dichlorobenzene	М	2760	μg/kg	1.0					< 1.0			

Client: HSP Consulting Engineers		Che	mtest J	ob No.:	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157	23-32157
Limited		21		-1- 15	4707000	4707000	1707010	1707010	1707011	4707040	4707050	1707050
Quotation No.: Q23-31791	— '		est Sam		1707629	1707630	1707640	1707642	1707644	1707649	1707650	1707652
Order No.: SC14805			nt Samp		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
		Sa	ample Lo		TP04	TP04	TP03	TP03	TP03	TP07	TP07	TP07
				e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		1.00	1.00	1.00	2.00	3.00	1.00	1.00	2.00
		Bot	ttom De		1.20	1.40	1.40	2.40	3.20	1.20	1.40	2.40
				ampled:	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	21-Sep-2023	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest			DURHAM	DURHAM		DURHAM		DURHAM	
Determinand	Accred.	SOP	Units									
N-Butylbenzene	U	2760	μg/kg	1.0					< 1.0			
1,2-Dichlorobenzene	М	2760	μg/kg	1.0					< 1.0			
1,2-Dibromo-3-Chloropropane	U	2760	μg/kg	50					< 50			
1,2,4-Trichlorobenzene	М	2760	μg/kg	1.0					< 1.0			
Hexachlorobutadiene	N	2760	μg/kg	1.0					< 1.0			
1,2,3-Trichlorobenzene	U	2760	μg/kg	2.0					< 2.0			
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0					< 1.0			
Naphthalene	М	2800	mg/kg	0.10		< 0.10	< 0.10				0.19	1.1
Acenaphthylene	N	2800	mg/kg	0.10		< 0.10	< 0.10				0.19	< 0.10
Acenaphthene	М	2800	mg/kg	0.10		< 0.10	< 0.10				0.26	< 0.10
Fluorene	М	2800	mg/kg	0.10		< 0.10	< 0.10				0.23	0.11
Phenanthrene	М	2800	mg/kg	0.10		0.33	0.38				2.8	0.61
Anthracene	М	2800	mg/kg	0.10		< 0.10	< 0.10				1.1	0.12
Fluoranthene	М	2800	mg/kg	0.10		0.20	0.20				11	0.71
Pyrene	М	2800	mg/kg	0.10		0.19	0.18				9.4	0.57
Benzo[a]anthracene	М	2800	mg/kg	0.10		0.12	0.14				6.3	0.44
Chrysene	М	2800	mg/kg	0.10		0.13	0.11				6.3	0.46
Benzo[b]fluoranthene	М	2800	mg/kg	0.10		< 0.10	0.16				9.1	0.75
Benzo[k]fluoranthene	М	2800	mg/kg	0.10		< 0.10	0.11				3.0	0.27
Benzo[a]pyrene	М	2800	mg/kg	0.10		< 0.10	0.12				7.4	0.59
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10		< 0.10	0.14				4.3	0.41
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10		< 0.10	0.10				1.1	0.12
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10		< 0.10	0.13				4.3	0.41
Total Of 16 PAH's	N	_	mg/kg	2.0		< 2.0	< 2.0				67	6.7
Total Phenols	M	2920	mg/kg	0.10		< 0.10	< 0.10		< 0.10		0.24	< 0.10
SVOC Subcon	SN	2020	mg/kg						See Attached		V.2 1	. 0.10

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-32157	23-32157	23-32157
Quotation No.: Q23-31791		Chemte	st Sam	ple ID.:	1707653	1707655	1707656
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP07	TP08	TP08
		Sa	ample Lo	ocation:	TP07	TP08	TP08
				e Type:	SOIL	SOIL	SOIL
			Top Der		3.00	1.00	2.10
		Bot	tom Der	. ,	3.10	1.20	2.30
			Date Sa	ampled:	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	os Lab:	·	·	DURHAM
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A			Fibres/Clumps
Asbestos Identification	U	2192		N/A			Chrysotile
Asbestos by Gravimetry	U	2192	%	0.001			0.001
Total Asbestos	U	2192	%	0.001			0.001
Moisture	N	2030	%	0.020	11	12	12
pH at 20C	М	2010		4.0			9.0
pH (2.5:1) at 20C	N	2010		4.0	9.2	8.6	
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40			2.0
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.64	
Total Sulphur	U	2175	%	0.010	0.048	0.45	
Sulphur (Elemental)	М	2180	mg/kg	1.0			
Chloride (Water Soluble)	М	2220	g/l	0.010			
Cyanide (Total)	М	2300	mg/kg	0.50			1.7
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50			
Sulphate (Acid Soluble)	U	2430	%	0.010	0.059	0.56	
Arsenic	М	2455	mg/kg	0.5			23
Beryllium	U	2455	mg/kg	0.5			1.7
Cadmium	М	2455	mg/kg	0.10			0.53
Chromium	М	2455	mg/kg	0.5			30
Antimony	N	2455	mg/kg	2.0			3.1
Copper	М	2455	mg/kg	0.50			370
Mercury	М	2455	mg/kg	0.05			5.2
Nickel	М	2455	mg/kg	0.50			53
Lead	М	2455	mg/kg	0.50			270
Selenium	М	2455	mg/kg	0.25			0.97
Vanadium	U	2455	mg/kg	0.5			29
Zinc	М	2455	mg/kg	0.50			1700
Chromium (Hexavalent)	N	2490	mg/kg	0.50			< 0.50
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05			< 0.05
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05			< 0.05
Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05			< 0.05
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10			< 0.10
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05			< 0.05
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25			< 0.25
Aliphatic EPH >C10-C12	М	2690	mg/kg	2.00			< 2.0

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-32157	23-32157	23-32157
Quotation No.: Q23-31791	(Chemtest Sample ID.:		1707653	1707655	1707656	
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP07	TP08	TP08
		Sa	ample Lo	ocation:	TP07	TP08	TP08
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	3.00	1.00	2.10
		Bot	tom De	oth (m):	3.10	1.20	2.30
			Date Sa	ampled:	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	os Lab:			DURHAM
Determinand	Accred.	SOP	Units	LOD			
Aliphatic EPH >C12-C16	М	2690	mg/kg	1.00			< 1.0
Aliphatic EPH >C16-C21	M	2690	mg/kg	2.00			< 2.0
Aliphatic EPH >C21-C35	M	2690	mg/kg	3.00			< 3.0
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00			< 10
Total Aliphatic EPH >C10-C35	М	2690	mg/kg	5.00			< 5.0
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00			< 10
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05			< 0.05
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05			< 0.05
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05			< 0.05
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25			< 0.25
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00			< 1.0
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00			< 1.0
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00			8.7
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00			4.8
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00			< 1.0
Total Aromatic EPH >C10-C35	U	2690	5	5.00			14
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00			14
Total VPH >C5-C10	U	2780	mg/kg	0.50			< 0.50
Total EPH >C10-C35	U	2690	mg/kg	10.00			14
Total EPH >C10-C40	N	2690	mg/kg	10.00			14
LOI	М	2610	%	0.10			
Total Organic Carbon	М	2625	%	0.20			2.6
Dichlorodifluoromethane	U	2760	μg/kg	1.0			
Chloromethane	М	2760	μg/kg	1.0			
Vinyl Chloride	М	2760		1.0			
Bromomethane	М	2760		20			
Chloroethane	U	2760	15	2.0			
Trichlorofluoromethane	М	2760	100	1.0			
1,1-Dichloroethene	М	2760	μg/kg	1.0			
Dichloromethane	N	2760		50			
Trans 1,2-Dichloroethene	М	2760		1.0			
1,1-Dichloroethane	М	2760		1.0			
cis 1,2-Dichloroethene	М	2760	μg/kg	1.0			
Bromochloromethane	U	2760	μg/kg	5.0			
Trichloromethane	М	2760	μg/kg	1.0			
1,1,1-Trichloroethane	М	2760	μg/kg	1.0			

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-32157	23-32157	23-32157
Quotation No.: Q23-31791	-	Chemtest Sample ID.:			1707653	1707655	1707656
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP07	TP08	TP08
		Sa	ample Lo	cation:	TP07	TP08	TP08
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	3.00	1.00	2.10
		Bot	tom Dep	oth (m):	3.10	1.20	2.30
			Date Sa	mpled:	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	os Lab:			DURHAM
Determinand	Accred.	SOP	Units	LOD			
Tetrachloromethane	М	2760	μg/kg	1.0			
1,1-Dichloropropene	U	2760	μg/kg	1.0			
Benzene	М	2760	μg/kg	1.0			< 1.0
1,2-Dichloroethane	М	2760	μg/kg	2.0			
Trichloroethene	N	2760		1.0			
1,2-Dichloropropane	М	2760	μg/kg	1.0			
Dibromomethane	М	2760	μg/kg	1.0			
Bromodichloromethane	М	2760	μg/kg	5.0			
cis-1,3-Dichloropropene	N	2760		10			
Toluene	М	2760	μg/kg	1.0			< 1.0
Trans-1,3-Dichloropropene	N	2760	μg/kg	10			
1,1,2-Trichloroethane	М	2760	μg/kg	10			
Tetrachloroethene	М	2760	μg/kg	1.0			
1,3-Dichloropropane	U	2760		2.0			
Dibromochloromethane	U	2760		10			
1,2-Dibromoethane	М	2760		5.0			
Chlorobenzene	М	2760		1.0			
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0			
Ethylbenzene	М	2760		1.0			< 1.0
m & p-Xylene	М	2760	μg/kg	1.0			< 1.0
o-Xylene	М	2760		1.0			< 1.0
Styrene	М	2760		1.0			
Tribromomethane	U	2760		1.0			
Isopropylbenzene	М	2760	μg/kg	1.0			
Bromobenzene	М	2760		1.0			
1,2,3-Trichloropropane	N	2760		50			
N-Propylbenzene	U	2760		1.0			
2-Chlorotoluene	М	2760		1.0			
1,3,5-Trimethylbenzene	М	2760		1.0			
4-Chlorotoluene	U	2760		1.0			
Tert-Butylbenzene	U	2760		1.0			
1,2,4-Trimethylbenzene	М	2760		1.0			
Sec-Butylbenzene	U	2760		1.0			
1,3-Dichlorobenzene	М	2760	μg/kg	1.0			
4-Isopropyltoluene	U	2760		1.0			
1,4-Dichlorobenzene	М	2760	μg/kg	1.0			

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-32157	23-32157	23-32157
Quotation No.: Q23-31791		Chemte	st Sam	ple ID.:	1707653	1707655	1707656
Order No.: SC14805		Clie	nt Samp	le Ref.:	TP07	TP08	TP08
		Sa	ample Lo	cation:	TP07	TP08	TP08
			Sample	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	3.00	1.00	2.10
		Bot	tom Dep	oth (m):	3.10	1.20	2.30
			Date Sa	mpled:	20-Sep-2023	20-Sep-2023	20-Sep-2023
			Asbest	os Lab:			DURHAM
Determinand	Accred.	SOP	Units	LOD			
N-Butylbenzene	U	2760	μg/kg	1.0			
1,2-Dichlorobenzene	М	2760	15	1.0			
1,2-Dibromo-3-Chloropropane	U	2760	μg/kg	50			
1,2,4-Trichlorobenzene	М	2760	μg/kg	1.0			
Hexachlorobutadiene	N	2760	μg/kg	1.0			
1,2,3-Trichlorobenzene	U	2760	μg/kg	2.0			
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0			
Naphthalene	М	2800	mg/kg	0.10			0.41
Acenaphthylene	N	2800	mg/kg	0.10			0.25
Acenaphthene	М	2800	mg/kg	0.10			0.10
Fluorene	М	2800	mg/kg	0.10			0.19
Phenanthrene	М	2800	mg/kg	0.10			1.4
Anthracene	М	2800	mg/kg	0.10			0.43
Fluoranthene	М	2800	mg/kg	0.10			2.1
Pyrene	М	2800	mg/kg	0.10			1.6
Benzo[a]anthracene	М	2800	mg/kg	0.10			1.2
Chrysene	М	2800	mg/kg	0.10			1.2
Benzo[b]fluoranthene	М	2800	mg/kg	0.10			1.4
Benzo[k]fluoranthene	М	2800	mg/kg	0.10			0.63
Benzo[a]pyrene	М	2800	mg/kg	0.10			0.97
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10			0.78
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10			0.28
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10			0.81
Total Of 16 PAH's	N	2800	mg/kg	2.0			14
Total Phenols	М	2920	mg/kg	0.10			< 0.10
SVOC Subcon	SN		mg/kg	N/A			

Project: C3297 Barry Waterfront (<u>College</u>								
Chemtest Job No:	23-32157						Landfili V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1707640							Limits	
Sample Ref:	TP03							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP03							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.40						Landfill	hazardous	Landfill
Sampling Date:	21-Sep-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	М	%			0.22	3	5	6
Loss On Ignition	2610	М	%]		2.5			10
Total BTEX	2760	М	mg/kg]		< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg]		< 0.10	1		
TPH Total WAC	2670	М	mg/kg]		480	500		
Total (Of 17) PAH's	2700	N	mg/kg]		< 2.0	100		
pH at 20C	2010	М]		8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.057		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	S 10 l/kg
Arsenic							0.5	2	25
Barium							20	100	300
Cadmium							0.04	1	5
Chromium							0.5	10	70
Copper							2	50	100
Mercury							0.01	0.2	2
Molybdenum							0.5	10	30
Nickel							0.4	10	40
Lead							0.5	10	50
Antimony							0.06	0.7	5
Selenium							0.1	0.5	7
Zinc							4	50	200
Chloride							800	15000	25000
Fluoride							10	150	500
Sulphate							1000	20000	50000
Total Dissolved Solids							4000	60000	100000
Phenol Index							1	-	-
Dissolved Organic Carbon							500	800	1000

Solid Information							
Dry mass of test portion/kg	0.175						
Moisture (%)	13						

Leachate Test Information							
Leachant volume 1st extract/l							
Leachant volume 2nd extract/l							
Eluant recovered from 1st extract/l							

Waste Acceptance Criteria

Project: C3297 Barry Waterfront C	<u> Sollege</u>								
Chemtest Job No:	23-32157						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1707650							Limits	
Sample Ref:	TP07							Stable, Non-	
Sample ID:								reactive	ĺ
Sample Location:	TP07							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.40						Landfill	hazardous	Landfill
Sampling Date:	20-Sep-2023							Landfill	l
Determinand	SOP	Accred.	Units						<u> </u>
Total Organic Carbon	2625	M	%			4.6	3	5	6
Loss On Ignition	2610	М	%			4.6			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			290	500		
Total (Of 17) PAH's	2700	N	mg/kg			61	100		
pH at 20C	2010	М				8.7		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.033		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	/S 10 I/kg
Arsenic							0.5	2	25
Barium							20	100	300
Cadmium							0.04	1	5
Chromium							0.5	10	70
Copper							2	50	100
Mercury							0.01	0.2	2
Molybdenum							0.5	10	30
Nickel							0.4	10	40
Lead							0.5	10	50
Antimony							0.06	0.7	5
Selenium							0.1	0.5	7
Zinc							4	50	200
Chloride							800	15000	25000
Fluoride							10	150	500
Sulphate							1000	20000	50000
Total Dissolved Solids							4000	60000	100000
Phenol Index							1	-	-
Dissolved Organic Carbon							500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	8.0					

Leachate Test Information						
Leachant volume 1st extract/l						
Leachant volume 2nd extract/l						
Eluant recovered from 1st extract/l						

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary				
1010	pH Value of Waters	pH at 20°C	pH Meter				
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.				
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.				
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).				
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)				
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.				
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemic detection.				
2010	pH Value of Soils	pH at 20°C	pH Meter				
2015	Acid Neutralisation Capacity	Acid Reserve	Titration				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection				
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry				
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.				
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.				
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.				
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.				
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.				

Test Methods

SOP	Title	Parameters included	Method summary
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Initial Date of Issue:

Report No.: 23-32801-1

Re-Issue Details:

Client HSP Consulting Engineers Limited

11-Oct-2023

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 21-Sep-2023

Order No.: Date Instructed: 29-Sep-2023

No. of Samples: 8

Turnaround (Wkdays): 7 Results Due: 09-Oct-2023

Date Approved: 11-Oct-2023 Subcon Results Due: 10-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited	Chemtest Job No.:		23-32801	23-32801	23-32801	23-32801			
Quotation No.: Q23-31791	Chemtest Sample ID.:		1710428	1710430	1710431	1710433			
Order No.:			Clie	nt Samp	le Ref.:	TP05	TP06	TP09	TP10
				ample Lo		TP05	TP06	TP09	TP10
					е Туре:	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	1.10	2.00	1.10	0.25
			Bot	tom De	oth (m):	1.20	2.20	1.30	0.45
				Date Sa	ampled:	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-202
Determinand	Accred.	SOP	Type	Units	LOD				
pH at 20C	U	1010	2:1		N/A	8.7	8.1	10.1	9.0
pH C8 at 20C	U	1010	8:1		N/A	8.7	8.1	8.9	8.9
Ammoniacal Nitrogen	U	1220	2:1	mg/l	0.050	< 0.050	< 0.050	0.058	1.8
C8 Ammoniacal Nitrogen	U	1220	8:1	mg/l	0.050	0.051	0.066	0.053	0.12
Cyanide (Total)	U	1300	2:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
C8 Cyanide (Total)	U	1300	8:1	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1455	2:1	μg/l	0.20	1.6	0.71	1.2	0.49
C8 Arsenic (Dissolved)	U	1455	8:1	μg/l	0.20	2.1	1.0	< 0.20	0.51
Boron (Dissolved)	U	1455	2:1	µg/l	10.0	170	28	46	13
C8 Boron (Dissolved)	U	1455	8:1	µg/l	10.0	32	< 10	< 10	< 10
Beryllium (Dissolved)	U	1455	2:1	μg/l	1.00	< 1.0	< 1.0	< 1.0	< 1.0
C8 Beryllium (Dissolved)	U	1455	8:1	µg/l	1.00	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	Ü	1455	2:1	µg/l	0.11	< 0.11	< 0.11	< 0.11	< 0.11
C8 Cadmium (Dissolved)	U	1455	8:1	μg/l	0.11	< 0.11	< 0.11	< 0.11	< 0.11
Chromium (Dissolved)	Ü	1455	2:1	µg/l	0.50	0.82	1.4	5.8	< 0.50
C8 Chromium (Dissolved)	Ü	1455	8:1	µg/l	0.50	< 0.50	0.58	< 0.50	< 0.50
Copper (Dissolved)	U	1455	2:1	µg/l	0.50	3.3	0.79	1.7	7.6
C8 Copper (Dissolved)	U	1455	8:1	µg/l	0.50	1.3	< 0.50	< 0.50	0.89
Mercury (Dissolved)	U	1455	2:1	µg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05
C8 Mercury (Dissolved)	U	1455	8:1	µg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (Dissolved)	Ü	1455	2:1	μg/l	0.50	< 0.50	< 0.50	< 0.50	24
C8 Nickel (Dissolved)	U	1455	8:1	µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Lead (Dissolved)	U	1455	2:1	µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50
C8 Lead (Dissolved)	U	1455	8:1	μg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Antimony (Dissolved)	Ü	1455	2:1	µg/l	0.50	1.8	0.90	9.6	0.51
C8 Antimony (Dissolved)	Ü	1455	8:1	µg/l	0.50	0.63	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	Ü	1455	2:1	µg/l	0.50	1.2	0.94	0.77	0.75
C8 Selenium (Dissolved)	U	1455	8:1	μg/l	0.50	< 0.50	< 0.50	< 0.50	0.74
Vanadium (Dissolved)	Ü	1455	2:1	μg/l	0.50	2.6	< 0.50	17	< 0.50
C8 Vanadium (Dissolved)	Ü	1455	8:1	μg/l	0.50	7.9	1.1	< 0.50	< 0.50
Zinc (Dissolved)	Ü	1455	2:1	μg/l	2.5	< 2.5	< 2.5	< 2.5	56
C8 Zinc (Dissolved)	Ü	1455	8:1	μg/l	2.5	< 2.5	< 2.5	< 2.5	3.9
C2 Naphthalene	Ü	1700	2:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Acenaphthylene	Ü	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Acenaphthene	Ü	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Fluorene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Phenanthrene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: HSP Consulting Engineers Limited	Chemtest Job No.:		23-32801	23-32801	23-32801	23-32801			
Quotation No.: Q23-31791	Chemtest Sample ID.:		1710428	1710430	1710431	1710433			
Order No.:			Clie	nt Samp	le Ref.:	TP05	TP06	TP09	TP10
			Sa	ample Lo	ocation:	TP05	TP06	TP09	TP10
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
				Top Dep	oth (m):	1.10	2.00	1.10	0.25
			Bot	tom De	oth (m):	1.20	2.20	1.30	0.45
				Date Sa	ampled:	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-202
Determinand	Accred.	SOP	Type	Units	LOD				
C2 Anthracene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Fluoranthene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Pyrene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Benzo[a]anthracene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Chrysene	N	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Benzo[b]fluoranthene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Benzo[k]fluoranthene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Benzo[a]pyrene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Indeno(1,2,3-c,d)Pyrene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Dibenz(a,h)Anthracene	U	1700	2:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Benzo[g,h,i]perylene	U	1700	2:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C2 Total Of 16 PAH's	N	1700	2:1	μg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
C8 Naphthalene	U	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Acenaphthylene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Acenaphthene	U	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Fluorene	U	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Phenanthrene	Ü	1700	8:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Anthracene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Benzo[a]anthracene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Chrysene	N	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Benzo[b]fluoranthene	U	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Benzo[k]fluoranthene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Benzo[a]pyrene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Indeno(1,2,3-c,d)Pyrene	Ü	1700	8:1	μg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Dibenz(a,h)Anthracene	Ü	1700	8:1	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
C8 Total Of 16 PAH's	N	1700	8:1	μg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	1760	2:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
C8 Benzene	U	1760	8:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	Ü	1760	2:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
C8 Toluene	U	1760	8:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	Ü	1760	2:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
C8 Ethylbenzene	U	1760	8:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	2:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
C8 m & p-Xylene	U	1760	8:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	2:1	μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
C8 o-Xylene	U	1760	8:1	μg/l μg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
		11/00	U. I	uu/I	1.0	→ 1.0	→ 1. U	→ 1. 0	• 1. ∪

Client: HSP Consulting Engineers Limited		Chemtest Job No.:				23-32801	23-32801	23-32801	23-32801
Quotation No.: Q23-31791		(Chemte	st Sam	ple ID.:	1710428	1710430	1710431	1710433
Order No.:			Clie	nt Samp	le Ref.:	TP05	TP06	TP09	TP10
			Sa	ample Lo	ocation:	TP05	TP06	TP09	TP10
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	1.10	2.00	1.10	0.25
			Bot	tom De	pth (m):	1.20	2.20	1.30	0.45
	Date Sampled:				ampled:	18-Sep-2023	18-Sep-2023	18-Sep-2023	18-Sep-2023
Determinand	Accred.	SOP	Type	Units	LOD				
C8 Total Phenols	U	1920	8:1	mg/l	0.030	< 0.030	< 0.030	< 0.030	< 0.030

Projec	t: C3297	Barry	Waterfront /	College

Project: C3297 Barry Waterfront C	<u> college</u>								
Chemtest Job No:	23-32801						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1710427							Limits	
Sample Ref:	TP05							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP05							hazardous	Hazardous
Top Depth(m):	0.15						Inert Waste	waste in non-	Waste
Bottom Depth(m):	2.00						Landfill	hazardous	Landfill
Sampling Date:	18-Sep-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			7.1	3	5	6
Loss On Ignition	2610	M	%			4.0			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			24	100		
pH at 20C	2010	М				8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.042		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	/S 10 I/kg
Arsenic	1455	U	0.0006	0.0012	0.0011	0.011	0.5	2	25
Barium	1455	U	0.037	0.023	0.067	0.24	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0031	0.0007	0.0057	0.0089	0.5	10	70
Copper	1455	U	0.0023	0.0012	0.0042	0.0021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.012	0.0023	0.021	0.032	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0011	< 0.0005	0.0019	0.0010	0.06	0.7	5
Selenium	1455	U	0.0008	< 0.0005	0.0014	0.0007	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.9	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.65	0.23	1.2	2.7	10	150	500
Sulphate	1220	U	15	1.9	28	31	1000	20000	50000
Total Dissolved Solids	1020	N	120	19	230	280	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.7	< 2.5	< 50	< 50	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.175						
Moisture (%)	33						

Leachate Test Information							
Leachant volume 1st extract/l	0.263						
Leachant volume 2nd extract/l	1.400						
Eluant recovered from 1st extract/l	0.164						

Waste Acceptance Criteria

Project: C3297 Barry Waterfront C	<u> College</u>								
Chemtest Job No:	23-32801						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1710429							Limits	
Sample Ref:	TP06							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP06							hazardous	Hazardous
Top Depth(m):	1.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.20						Landfill	hazardous	Landfill
Sampling Date:	18-Sep-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			6.9	3	5	6
Loss On Ignition	2610	M	%			3.8			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			380	500		
Total (Of 17) PAH's	2700	N	mg/kg			31	100		
pH at 20C	2010	M				8.7		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg			0.037		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	/S 10 I/kg
Arsenic	1455	U	0.0014	0.0011	0.0027	0.012	0.5	2	25
Barium	1455	U	0.062	0.047	0.12	0.49	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0030	0.0006	0.0058	0.0098	0.5	10	70
Copper	1455	U	0.0024	0.0011	0.0046	0.0039	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0090	0.0017	0.017	0.029	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0087	0.014	0.017	0.13	0.06	0.7	5
Selenium	1455	U	0.0020	0.0009	0.0039	0.011	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	6.9	< 1.0	13	11	800	15000	25000
Fluoride	1220	U	0.29	0.16	< 1.0	1.8	10	150	500
Sulphate	1220	U	20	3.3	39	60	1000	20000	50000
Total Dissolved Solids	1020	N	150	51	290	670	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.8	< 2.5	< 50	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	22

Leachate Test Information	
Leachant volume 1st extract/l	0.301
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.288

Waste Acceptance Criteria

	Į	<u>Pro</u>	ject:	C3297	Barr	<u>y Waterfront College</u>	
--	---	------------	-------	-------	------	-----------------------------	--

Project: C3297 Barry Waterfront College	<u>ge</u>								
Chemtest Job No:	23-32801						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1710432							Limits	
Sample Ref:	TP09							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP09							hazardous	Hazardous
Top Depth(m):	1.1						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.3						Landfill	hazardous	Landfill
Sampling Date:	18-Sep-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			1.1	3	5	6
Loss On Ignition	2610	M	%			3.9			10
Total BTEX	2760	M	mg/kg			< 0.010	6		-
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH at 20C	2010	М				8.7		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.040		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	•
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	/S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	0.010	< 0.005	0.020	0.015	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0008	0.0006	0.0015	0.0059	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.23	0.14	< 1.0	1.5	10	150	500
Sulphate	1220	U	24	1.8	46	50	1000	20000	50000
Total Dissolved Solids	4000	I NI	100	43	200	520	4000	60000	100000
	1020	N					+000	00000	100000
Phenol Index Dissolved Organic Carbon	1020 1920 1610	U U	< 0.030 3.0	< 0.030 < 2.5	< 0.30 < 50	< 0.50 < 50	1 500	- 800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	25

Leachate Test Information	
Leachant volume 1st extract/l	0.292
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.256

Waste Acceptance Criteria

Project: C3297 Barry Waterfront College

	<u>oliege</u>								
Chemtest Job No:	23-32801						Landfill V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	1710434							Limits	
Sample Ref:	TP10							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP10							hazardous	Hazardous
Top Depth(m):	2.90						Inert Waste	waste in non-	Waste
Bottom Depth(m):	3.00						Landfill	hazardous	Landfill
Sampling Date:	18-Sep-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			2.6	3	5	6
Loss On Ignition	2610	М	%			3.3			10
Total BTEX	2760	М	mg/kg			< 0.010	6		1
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			< 10	500		-
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
pH at 20C	2010	М				8.8		>6	1
Acid Neutralisation Capacity	2015	N	mol/kg			0.040		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0013	0.0017	0.0023	0.016	0.5	2	25
Barium	1455	U	0.039	0.12	0.070	1.1	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	< 0.0005	0.0013	0.0007	0.5	10	70
Copper	1455	U	0.0011	< 0.0005	0.0020	0.0010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0085	0.0022	0.015	0.027	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0007	< 0.0005	0.0012	0.0006	0.06	0.7	5
Selenium	1455	U	0.0012	0.0006	0.0022	0.0063	0.1	0.5	7
Zinc	1455	U	< 0.003	0.003	< 0.003	0.024	4	50	200
Chloride	1220	U	96	10	170	180	800	15000	25000
Fluoride	1220	U	0.44	0.22	< 1.0	2.4	10	150	500
Sulphate	1220	U	31	6.9	56	89	1000	20000	50000
Total Dissolved Solids	1020	N	330	91	590	1100	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	4.1	3.0	< 50	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	36

Leachate Test Information	
Leachant volume 1st extract/l	0.253
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.156

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	pH at 20°C	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH at 20°C	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
	Characterisation of Waste	Waste material including soil, sludges and	ComplianceTest for Leaching of Granular
650	(Leaching WAC)	granular waste	Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-33624-1

Initial Date of Issue: 17-Oct-2023

Re-Issue Details:

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 06-Oct-2023

Order No.: SC14805 Date Instructed: 10-Oct-2023

No. of Samples: 5

Turnaround (Wkdays): 5 Results Due: 16-Oct-2023

Date Approved: 17-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-33624	23-33624	23-33624	23-33624	23-33624
Quotation No.: Q23-31791	•	Chemte	st Sam	ple ID.:	1713577	1713579	1713581	1713583	1713586
		Cli	ent Sam	ple ID.:	BH01	BH02	BH02	BH03	BH06
		Sample Location:				BH02	BH02	BH03	BH06
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	1.0	0.1	1.0	0.1	0.1
		Bot	tom De	oth (m):	1.2	0.3	1.2	0.3	0.3
			Date Sa	ampled:	04-Oct-2023	04-Oct-2023	04-Oct-2023	05-Oct-2023	05-Oct-2023
			Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD					
ACM Type	U	2192		N/A	1	-	1	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbesto Detected
Moisture	N	2030	%	0.020	12	18	6.3	7.7	7.0
pH at 20C	U	2010		4.0	8.5	8.0	8.3	9.3	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.43	< 0.40	< 0.40	< 0.40	< 0.40
Sulphur (Elemental)	U	2180	mg/kg	1.0				< 1.0	
Chloride (Water Soluble)	U	2220	g/l	0.010				< 0.010	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	1.1	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50				3.3	
Arsenic	U	2455	mg/kg	0.5	11	9.6	12	14	6.2
Beryllium	U	2455	mg/kg	0.5	0.8	0.6	0.9	0.8	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.50	0.29	0.57	0.54	0.29
Chromium	U	2455	mg/kg	0.5	31	16	22	27	14
Antimony	N	2455	mg/kg	2.0	2.3	< 2.0	< 2.0	2.1	< 2.0
Copper	U	2455	mg/kg	0.50	120	14	74	62	40
Mercury	U	2455	mg/kg	0.05	0.98	0.06	0.46	0.20	1.1
Nickel	U	2455	mg/kg	0.50	22	13	26	31	13
Lead	U	2455	mg/kg	0.50	140	31	160	130	77
Selenium	U	2455	mg/kg	0.25	0.62	0.58	1.0	0.80	0.51
Vanadium	U	2455	mg/kg	0.5	29	20	24	27	15
Zinc	U	2455	mg/kg	0.50	460	69	320	170	130
Chromium (Hexavalent)	N	2490	mg/kg	0.50				< 0.50	
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	0.11	< 0.05
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12	U	2690	mg/kg	2.00	< 2.0	6.2	2.4	8.0	2.8
Aliphatic EPH >C12-C16	U	2690	mg/kg	1.00	< 1.0	24	< 1.0	12	< 1.0
Aliphatic EPH >C16-C21	U	2690	mg/kg	2.00	< 2.0	17	< 2.0	12	8.9
Aliphatic EPH >C21-C35	U	2690	mg/kg	3.00	4.3	38	36	110	67
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00	14	12	< 10	58	110
Total Aliphatic EPH >C10-C35	U	2690	mg/kg	5.00	< 5.0	86	41	140	79
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	14	98	41	200	190

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-33624	23-33624	23-33624	23-33624	23-33624
Quotation No.: Q23-31791		Chemte	st Sam	ple ID.:	1713577	1713579	1713581	1713583	1713586
	Client Sample ID.:				BH01	BH02	BH02	BH03	BH06
		Sa	ample Lo	ocation:	BH01	BH02	BH02	BH03	BH06
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	1.0	0.1	1.0	0.1	0.1
		Bot	tom De	oth (m):	1.2	0.3	1.2	0.3	0.3
			Date Sa	ampled:	04-Oct-2023	04-Oct-2023	04-Oct-2023	05-Oct-2023	05-Oct-202
			Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD					
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00	< 1.0	51	2.8	6.9	2.4
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00	< 1.0	31	< 1.0	5.3	6.0
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00	16	19	5.9	18	28
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00	8.2	61	100	59	260
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	6.4	130	19	27	43
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00	24	160	110	89	290
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	30	290	130	120	340
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35	U	2690	mg/kg	10.00	28	250	150	230	370
Total EPH >C10-C40	N	2690	mg/kg	10.00	49	390	170	320	530
LOI	U	2610	%	0.10				2.9	
Total Organic Carbon	U	2625	%	0.20	7.8	3.1	9.4	3.3	12
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	0.31	< 0.10	0.38	0.34	0.38
Acenaphthylene	N	2800	mg/kg	0.10	0.13	< 0.10	0.20	< 0.10	0.23
Acenaphthene	U	2800	mg/kg	0.10	0.21	< 0.10	0.14	0.20	0.24
Fluorene	U	2800	mg/kg	0.10	0.22	< 0.10	0.15	0.14	0.31
Phenanthrene	U	2800	mg/kg	0.10	2.0	0.28	1.4	1.1	2.5
Anthracene	U	2800	mg/kg	0.10	0.49	< 0.10	0.38	0.27	0.94
Fluoranthene	U	2800	mg/kg	0.10	5.3	0.64	3.6	1.9	6.6
Pyrene	U	2800	mg/kg	0.10	4.4	0.50	3.1	1.5	5.8
Benzo[a]anthracene	U	2800	mg/kg	0.10	3.1	0.37	2.2	0.99	4.7
Chrysene	U	2800	mg/kg	0.10	3.1	0.37	3.1	1.0	5.7
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	5.0	0.59	5.3	1.7	8.2
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	1.7	< 0.10	1.9	0.55	2.9
Benzo[a]pyrene	U	2800	mg/kg	0.10	3.3	0.37	3.3	1.0	5.4
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	2.3	0.31	2.6	0.80	4.3
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	0.56	< 0.10	0.73	0.18	1.1

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	23-33624	23-33624	23-33624	23-33624	23-33624
Quotation No.: Q23-31791		Chemte	est Sam	ple ID.:	1713577	1713579	1713581	1713583	1713586
		Cli	ent Sam	ple ID.:	BH01	BH02	BH02	BH03	BH06
		Sa	ample Lo	ocation:	BH01	BH02	BH02	BH03	BH06
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	1.0	0.1	1.0	0.1	0.1
		Bo	ttom De _l	pth (m):	1.2	0.3	1.2	0.3	0.3
		Date Sampled:		04-Oct-2023	04-Oct-2023	04-Oct-2023	05-Oct-2023	05-Oct-2023	
			Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD					
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	2.3	0.31	2.7	0.80	4.1
Total Of 16 PAH's	N	2800	mg/kg	2.0	34	3.7	31	13	53
PCB 28	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 52	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 90+101	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 118	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 153	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 138	U	2815	mg/kg	0.010		< 0.010		< 0.010	< 0.010
PCB 180	U		mg/kg			< 0.010		< 0.010	< 0.010
Total PCBs (7 Congeners)	U	2815	mg/kg			< 0.10		< 0.10	< 0.10
Total Phenols	U	2920	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	0.91

Test Methods

Title	Parameters included	Method summary			
pH Value of Soils	pH at 20°C	pH Meter			
Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			
Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection			
Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.			
Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.			
Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.			
Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.			
Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.			
Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.			
Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.			
EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection			
Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.			
VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection			
Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS			
Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS			
Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.			
	pH Value of Soils Moisture and Stone Content of Soils(Requirement of MCERTS) Soil Description(Requirement of MCERTS) Water Soluble Boron, Sulphate, Magnesium & Chromium Sulphur (Elemental) in Soils by HPLC Asbestos Water soluble Chloride in Soils Cyanides & Thiocyanate in Soils Sulphide in Soils Acid Soluble Metals in Soils Hexavalent Chromium in Soils Loss on Ignition Total Organic Carbon in Soils EPH A/A Split Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS VPH A/A Split Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS Polychlorinated Biphenyls (PCB) ICES7Congeners in	pH Value of Soils Moisture and Stone Content of Soils (Requirement of MCERTS) Moisture Soil Description (Requirement of MCERTS) Water Soluble Boron, Sulphate, Magnesium & Chromium Sulphur (Elemental) in Soils by HPLC Asbestos Water soluble Chloride in Soils Chloride Cyanides & Thiocyanate in Soils Sulphide Acid Soluble Metals in Soils Wetals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Magnaese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc Hexavalent Chromium in Soils Chromium [VI] Loss on Ignition Total Organic Carbon in Soils Chotalie Organic Compounds (VOCs) in Soils by Headspace GC-MS VPH A/A Split Acid Soly GC-MS Phenols in Soils by HPLC Polybolorianded Biphenyls (PCB) in Soils by HPLC Phenols and Stone Content of Soil description Moisture content Moisture content Moisture content Moisture content Soil description Boron; Sulphate; Magnesium; Chromium Phenols in Soil Soil Soil description Boron; Sulphate; Magnesium; Chromium Phenols in Soil Soil Soil description Moisture content Boron; Sulphate; Magnesium; Chromium Phenols in Soil Soil Soil Soil description Moisture content Boron; Sulphate; Magnesium; Chromium B			

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-33857-1

Initial Date of Issue: 23-Oct-2023

Re-Issue Details:

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 10-Oct-2023

Order No.: SC14805 Date Instructed: 12-Oct-2023

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 18-Oct-2023

Date Approved: 23-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	23-33857	
Quotation No.: Q23-31791	(Chemtest Sample ID.:				
			ent Sam		BH01	
		Sa	ample Lo		BH01	
				e Type:	SOIL	
	_		Top Dep	, ,	3.00	
Data marin and	Assusal	COD	Date Sa		06-Oct-2023	
Determinand Moisture	Accred.	SOP 2030	Units %	LOD 0.020	14	
pH at 20C	U	2010	70	4.0	9.0	
Boron (Hot Water Soluble)	U	2120	mg/kg		1.2	
Cyanide (Total)	Ü	2300		0.50	< 0.50	
Arsenic	Ü	2455	0	0.5	4.0	
Beryllium	U	2455	0 0	0.5	< 0.5	
Cadmium	U	2455		0.10	0.24	
Chromium	U	2455		0.5	8.3	
Antimony	N	2455		2.0	< 2.0	
Copper	U	2455	mg/kg	0.50	14	
Mercury	U	2455		0.05	0.09	
Nickel	U	2455	mg/kg	0.50	8.4	
Lead	U	2455		0.50	30	
Selenium	U	2455		0.25	0.25	
Vanadium	U	2455	J. J	0.5	8.4	
Zinc	U	2455		0.50	57	
Aliphatic VPH >C5-C6	U	2780			< 0.05	
Aliphatic VPH >C6-C7 Aliphatic VPH >C7-C8	U	2780 2780			< 0.05 < 0.05	
Aliphatic VPH >C6-C8 (Sum)	N N	2780	0		< 0.05	
Aliphatic VPH >C8-C10	U	2780	mg/kg		< 0.10	
Total Aliphatic VPH >C5-C10	U	2780			< 0.05	
Aliphatic EPH >C10-C12	U	2690		2.00	16	
Aliphatic EPH >C12-C16	Ü	2690		1.00	88	
Aliphatic EPH >C16-C21	Ü	2690			190	
Aliphatic EPH >C21-C35	Ü	2690			480	
Aliphatic EPH >C35-C40	N	2690			130	
Total Aliphatic EPH >C10-C35	U	2690	mg/kg		780	
Total Aliphatic EPH >C10-C40	N	2690			900	
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	
Aromatic VPH >C8-C10	U	2780			< 0.05	
Total Aromatic VPH >C5-C10	U	2780			< 0.25	
Aromatic EPH >C10-C12	U	2690		1.00	< 1.0	
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00	19	
Aromatic EPH >C16-C21	U	2690	0	2.00	81	
Aromatic EPH >C21-C35	U	2690		2.00	430	
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	4.7	

Client: HSP Consulting Engineers	Chemtest			ob No.:	23-33857
Limited					
Quotation No.: Q23-31791	(st Sam		1714537
			ent Sam		BH01
		Sa	ample Lo		BH01
				e Type:	SOIL
			Top Dep	, ,	3.00
			Date Sa		06-Oct-2023
Determinand	Accred.	SOP	Units	LOD	
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00	530
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	530
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50
Total EPH >C10-C35	U	2690	mg/kg	10.00	1300
Total EPH >C10-C40	N	2690	mg/kg	10.00	1400
Total Organic Carbon	U	2625	%	0.20	4.4
Benzene	U	2760	μg/kg	1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	0.33
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	0.23
Fluorene	U	2800	mg/kg	0.10	0.33
Phenanthrene	U	2800	mg/kg	0.10	2.4
Anthracene	U	2800	mg/kg	0.10	0.57
Fluoranthene	U	2800	mg/kg	0.10	3.9
Pyrene	U	2800	mg/kg	0.10	3.0
Benzo[a]anthracene	U	2800	mg/kg	0.10	2.1
Chrysene	U	2800	mg/kg	0.10	2.3
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	3.3
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	1.1
Benzo[a]pyrene	U	2800	mg/kg	0.10	2.7
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	1.8
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	0.39
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	1.5
Total Of 16 PAH's	N	2800	mg/kg	2.0	26
Total Phenols	U	2920		0.10	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH at 20°C	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8-C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Initial Date of Issue:

Report No.: 23-33873-1

Re-Issue Details:

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

18-Oct-2023

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 10-Oct-2023

Order No.: SC14805 Date Instructed: 10-Oct-2023

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 18-Oct-2023

Date Approved: 18-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - 2 Stage WAC

<u>Pro</u>	<u>ject:</u>	C3297	Barr	<u>/ Waterfront</u>	College

Project: C3297 Barry Waterfront Colle	<u>ge</u>								
Chemtest Job No:	23-33873						Landfill V	Vaste Acceptant	ce Criteria
Chemtest Sample ID:	1714615							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	BH03							hazardous	Hazardous
Top Depth(m):	0.10						Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.30						Landfill	hazardous	Landfill
Sampling Date:	05-Oct-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	М	%			2.6	3	5	6
Loss On Ignition	2610	М	%			1.3			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		-
TPH Total WAC	2670	М	mg/kg			320	500		
Total (Of 17) PAH's	2700	N	mg/kg			9.1	100		
pH at 20C	2010	M				8.4	1	>6	1
Acid Neutralisation Capacity	2015	N	mol/kg			0.0070	-	To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	'S 10 I/kg
Arsenic	1455	U	8000.0	0.0006	0.0016	0.0059	0.5	2	25
Barium	1455	U	0.11	0.024	0.22	0.37	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0010	< 0.0005	0.0021	0.0015	0.5	10	70
Copper	1455	U	0.0021	0.0013	0.0043	0.0030	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0069	0.0011	0.014	0.019	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0016	< 0.0005	0.0031	0.0022	0.06	0.7	5
Selenium	1455	U	0.0009	0.0008	0.0018	0.0080	0.1	0.5	7
Zinc	1455	U	0.010	0.010	0.020	0.10	4	50	200
Chloride	1220	U	10	< 1.0	20	14	800	15000	25000
Fluoride	1220	U	0.32	0.16	< 1.0	1.8	10	150	500
Sulphate	1220	U	13	2.0	26	36	1000	20000	50000
Total Dissolved Solids	1020	N	150	52	300	660	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	3.5	< 2.5	< 50	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	7.7					

Leachate Test Information						
Leachant volume 1st extract/l	0.335					
Leachant volume 2nd extract/l	1.400					
Eluant recovered from 1st extract/l	0.248					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity at 25°C and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH at 20°C	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-34386-1 **Initial Date of Issue:** 25-Oct-2023

Re-Issue Details:

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College (BWC)

Quotation No.: Q23-31791 Date Received: 16-Oct-2023

Order No.: SC14805 Date Instructed: 18-Oct-2023

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 24-Oct-2023

Date Approved: 25-Oct-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited		Chemtest Job No.:				
Quotation No.: Q23-31791	(Chemte	ple ID.:	1716528		
Order No.: SC14805		Clie	nt Samp	le Ref.:	BH04	
		Sa	ample Lo		BH04	
			Sampl	е Туре:	SOIL	
			Top Dep		1.0	
		Bot	tom De	oth (m):	1.2	
			Date Sa	ampled:	12-Oct-2023	
			Asbest	os Lab:	DURHAM	
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected	
Moisture	N	2030	%	0.020	19	
pH at 20C	U	2010		4.0	8.6	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	
Arsenic	U	2455	mg/kg	0.5	4.1	
Beryllium	U	2455	mg/kg	0.5	< 0.5	
Cadmium	U	2455	mg/kg	0.10	< 0.10	
Chromium	U	2455	mg/kg	0.5	7.2	
Antimony	N	2455	mg/kg	2.0	< 2.0	
Copper	U	2455	mg/kg	0.50	21	
Mercury	U	2455	mg/kg	0.05	< 0.05	
Nickel	U	2455	mg/kg	0.50	16	
Lead	U	2455	mg/kg	0.50	7.9	
Selenium	U	2455	mg/kg	0.25	0.28	
Vanadium	U	2455	mg/kg	0.5	13	
Zinc	U	2455	mg/kg	0.50	26	
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10	< 0.10	
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05	0.23	
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	
Aliphatic EPH >C10-C12	U	2690	mg/kg	2.00	27	
Aliphatic EPH >C12-C16	U	2690	mg/kg	1.00	580	
Aliphatic EPH >C16-C21	U	2690	mg/kg	2.00	940	
Aliphatic EPH >C21-C35	U	2690	mg/kg	3.00	330	
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00	36	
Total Aliphatic EPH >C10-C35	U	2690	mg/kg		1900	
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	1900	
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	
Aromatic VPH >C8-C10	U	2780	0	0.05	< 0.05	
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	

Client: HSP Consulting Engineers Limited		Chemtest Job No.:				
Quotation No.: Q23-31791	(Chemte	ple ID.:	1716528		
Order No.: SC14805		Clie	le Ref.:	BH04		
		Sa	ample Lo	ocation:	BH04	
			Sampl	е Туре:	SOIL	
			Top Dep	oth (m):	1.0	
		Bot	tom Dep	oth (m):	1.2	
			Date Sa	ampled:	12-Oct-2023	
			Asbest	os Lab:	DURHAM	
Determinand	Accred.	SOP	Units	LOD		
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00	9.3	
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00	380	
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00	680	
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00	210	
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	33	
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00	1300	
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	1300	
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50	
Total EPH >C10-C35	U	2690	mg/kg	10.00	3200	
Total EPH >C10-C40	N	2690	mg/kg	10.00	3200	
Total Organic Carbon	U	2625	%	0.20	12	
Benzene	U	2760	μg/kg	1.0	< 1.0	
Toluene	U	2760	μg/kg	1.0	< 1.0	
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	
o-Xylene	U	2760	μg/kg	1.0	< 1.0	
Naphthalene	U	2800	mg/kg	0.10	0.31	
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	
Fluorene	U	2800	mg/kg	0.10	< 0.10	
Phenanthrene	U	2800	mg/kg	0.10	0.46	
Anthracene	U	2800	mg/kg	0.10	< 0.10	
Fluoranthene	U	2800	mg/kg	0.10	1.3	
Pyrene	U	2800	mg/kg	0.10	1.1	
Benzo[a]anthracene	U	2800	mg/kg	0.10	0.76	
Chrysene	U	2800	mg/kg	0.10	0.70	
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	1.2	
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	0.23	
Benzo[a]pyrene	U	2800	mg/kg	0.10	0.88	
Indeno(1,2,3-c,d)Pyrene	U	2800	ט	0.10	0.49	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	0.63	
Total Of 16 PAH's	N		mg/kg	2.0	8.1	
PCB 28	U		mg/kg		< 0.010	
PCB 52	U		mg/kg		< 0.010	
PCB 90+101	U	2815	mg/kg	0.010	< 0.010	

Client: HSP Consulting Engineers Limited		Chemtest Job No.:				
Quotation No.: Q23-31791	(Chemte	st Sam	ple ID.:	1716528	
Order No.: SC14805		Clie	nt Samp	le Ref.:	BH04	
		Sa	ocation:	BH04		
			е Туре:	SOIL		
		Top Depth (m):				
		Bottom Depth (m):				
			Date Sa	ampled:	12-Oct-2023	
			Asbest	os Lab:	DURHAM	
Determinand	Accred.	SOP	Units	LOD		
PCB 118	U	2815	mg/kg	0.010	< 0.010	
PCB 153	U	2815	mg/kg	0.010	< 0.010	
PCB 138	U	U 2815 mg/kg 0.010				
PCB 180	U	U 2815 mg/kg 0.010				
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10	< 0.10	
Total Phenols	U	2920	mg/kg	0.10	< 0.10	

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH at 20°C	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-36103-1

Initial Date of Issue: 03-Nov-2023

Re-Issue Details:

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Laura Jones

Project C3297 Barry Waterfront College

Quotation No.: Q23-31791 Date Received: 27-Oct-2023

Order No.: SC14805 Date Instructed: 27-Oct-2023

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 02-Nov-2023

Date Approved: 03-Nov-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: HSP Consulting Engineers Limited		Chemtest Job No.:				23-36103
Quotation No.: Q23-31791		Chemtest Sample ID.:			1723539	1723546
Quotation No.: Q20 01701		Client Sample ID.:			BH03	BH06
			ample Lo		BH03	BH06
				e Type:	SOIL	SOIL
	+		Top De		1.8	1.8
	+	Bot	tom De		2	2
			Date Sa	, ,	14-Oct-2023	10-Oct-2023
				os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD	2011111111	2011111111
ACM Type	U	2192	010	N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	18	20
pH at 20C	U	2010		4.0	9.4	8.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	1.3
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	[B] < 0.50
Arsenic	U	2455		0.5	14	14
Beryllium	U	2455		0.5	0.7	0.7
Cadmium	U	2455	mg/kg	0.10	0.59	0.59
Chromium	U	2455		0.5	16	15
Antimony	N	2455		2.0	< 2.0	< 2.0
Copper	U	2455		0.50	89	140
Mercury	U	2455		0.05	0.20	0.44
Nickel	U	2455		0.50	26	24
Lead	U	2455		0.50	140	180
Selenium	U	2455	mg/kg	0.25	0.63	0.58
Vanadium	U	2455		0.5	21	17
Zinc	U	2455		0.50	140	240
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05
Aliphatic VPH >C6-C7	U	2780		0.05	< 0.05	[B] < 0.05
Aliphatic VPH >C7-C8	U	2780			0.14	[B] < 0.05
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10	0.14	[B] < 0.10
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	[B] < 0.25
Aliphatic EPH >C10-C12	U	2690	mg/kg	2.00	< 2.0	[B] 2.6
Aliphatic EPH >C12-C16	U	2690	mg/kg	1.00	< 1.0	[B] 10
Aliphatic EPH >C16-C21	U	2690		2.00	< 2.0	[B] 23
Aliphatic EPH >C21-C35	U	2690	mg/kg	3.00	6.8	[B] 60
Aliphatic EPH >C35-C40	N	2690	mg/kg		< 10	[B] 51
Total Aliphatic EPH >C10-C35	U	2690	mg/kg	5.00	11	[B] 96
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	11	[B] 150
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	[B] < 0.05
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	[B] < 0.25

Client: HSP Consulting Engineers		Che	mtest Jo	ob No.:	23-36103	23-36103
Limited		2hat-	at Car-	nla ID	4700500	4700540
Quotation No.: Q23-31791	<u> </u>	Chemtest Sample ID.: Client Sample ID.:			1723539	1723546
					BH03	BH06
		- 58	ample Lo		BH03	BH06
				e Type:	SOIL	SOIL
		D - 1	Top Dep		1.8	1.8
		Boi	tom De		2	2
			Date Sa	-	14-Oct-2023	10-Oct-2023
		Loop	Asbest		DURHAM	DURHAM
Determinand	Accred.	SOP			4.4	[D] 0 5
Aromatic EPH >C10-C12	U	2690	J. J		1.1	[B] 2.5
Aromatic EPH >C12-C16	U	2690	0 0	1.00	< 1.0	[B] 15
Aromatic EPH >C16-C21	U	2690		2.00	3.6	[B] 48
Aromatic EPH >C21-C35	U	2690		2.00	39	[B] 370
Aromatic EPH >C35-C40	N	2690		1.00	12	[B] 48
Total Aromatic EPH >C10-C35	U	2690	J. J	5.00	45	[B] 440
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	56	[B] 490
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50	[B] < 0.50
Total EPH >C10-C35	U	2690	mg/kg	10.00	55	[B] 530
Total EPH >C10-C40	N	2690	mg/kg	10.00	67	[B] 630
Total Organic Carbon	U	2625	%	0.20	16	28
Benzene	U	2760	μg/kg	1.0	6.8	[B] 5.2
Toluene	U	2760	μg/kg	1.0	7.4	[B] 5.1
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	[B] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	4.8	[B] 2.8
o-Xylene	U	2760		1.0	< 1.0	[B] < 1.0
Naphthalene	U	2800	0 0	0.10	0.83	1.2
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2800		0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	1.7	5.9
Anthracene	U	2800	mg/kg	0.10	0.51	1.3
Fluoranthene	U	2800	mg/kg	0.10	2.9	7.4
Pyrene	U	2800	0 0	0.10	2.6	5.6
Benzo[a]anthracene	U	2800		0.10	1.5	3.6
Chrysene	U	2800	mg/kg	0.10	2.0	3.7
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	2.7	3.9
Benzo[k]fluoranthene	U	2800	0 0	0.10	0.85	1.2
Benzo[a]pyrene	U	2800	mg/kg	0.10	1.4	3.1
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	1.3	1.8
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	1.4	1.8
Total Of 16 PAH's	N	2800	mg/kg	2.0	20	41
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1723546		ВН06	BH06	10-Oct-2023	В	Amber Glass 250ml
1723546		BH06	BH06	10-Oct-2023	В	Amber Glass 60ml
1723546		BH06	BH06	10-Oct-2023	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH at 20°C	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

ANALYTICAL TEST REPORT

Contract no: 127675-14

Contract name: SVOC Testing

Client reference: -

Clients name: Chemtest Eurofins

Clients address: 11 Depot Road

Newmarket CB8 0AL

Samples received: 19 October 2023

Analysis started: 19 October 2023

Analysis completed: 24 October 2023

Report issued: 24 October 2023

Key U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Abbie Neasham-Bourn

Senior Reporting Administrator

Chemtech Environmental Limited SOILS

Lab number			127675-14
Sample id			1707644
Depth (m)			-
Date sampled	1	Г	-
Test	Method	Units	
Semi-volatiles	T		
N-Nitrosodimethylamine	CE189	mg/kg	<0.1
Phenol	CE189	mg/kg	<0.1
Bis(2-chloroethyl)ether	CE189	mg/kg	<0.1
2-Chlorophenol	CE189	mg/kg	<0.1
1,3-Dichlorobenzene	CE189	mg/kg	<0.1
1,4-Dichlorobenzene	CE189	mg/kg	<0.1
2-Methylphenol	CE189	mg/kg	<0.1
1,2-Dichlorobenzene	CE189	mg/kg	<0.1
Bis(2-chloroisopropyl)ether	CE189	mg/kg	<0.1
3&4-Methylphenol	CE189	mg/kg	<0.1
N-Nitrosodi-n-propylamine	CE189	mg/kg	<0.1
Hexachloroethane	CE189	mg/kg	<0.1
Nitrobenzene	CE189	mg/kg	<0.1
Isophorone	CE189	mg/kg	<0.1
2,4-Dimethylphenol	CE189	mg/kg	<0.1
2-Nitrophenol	CE189	mg/kg	<0.1
Bis(2-chloroethoxy)methane	CE189	mg/kg	<0.1
2,4-Dichlorophenol	CE189	mg/kg	<0.1
1,2,4-Trichlorobenzene	CE189	mg/kg	<0.1
4-Chloroaniline	CE189	mg/kg	<0.1
Hexachlorobutadiene	CE189	mg/kg	<0.1
4-Chloro-3-methylphenol	CE189	mg/kg	<0.1
2-Methylnaphthalene	CE189	mg/kg	<0.1
1-Methylnaphthalene	CE189	mg/kg	<0.1
Hexachlorocyclopentadiene	CE189	mg/kg	<0.1
2,4,6-Trichlorophenol	CE189	mg/kg	<0.1
2,4,5-Trichlorophenol	CE189	mg/kg	<0.1
2-Chloronaphthalene	CE189	mg/kg	<0.1
2-Nitroaniline	CE189	mg/kg	<0.1
Dimethyl phthalate	CE189	mg/kg	<0.1
2,6-Dinitrotoluene	CE189	mg/kg	<0.1
3-Nitroaniline	CE189	mg/kg	<0.1
2,4-Dinitrophenol	CE189	mg/kg	<0.1
4-Nitrophenol	CE189	mg/kg	<0.1
2,4-Dinitrotoluene	CE189	mg/kg	<0.1
Dibenzofuran	CE189	mg/kg	<0.1
Diethyl phthalate	CE189		<0.1
	+	mg/kg	
4-Chlorophenylphenyl ether	CE189	mg/kg	<0.1
4-Nitroaniline	CE189	mg/kg	<0.1
2-Methyl-4,6-dinitrophenol	CE189	mg/kg	<0.1
Azobenzene	CE189	mg/kg	<0.1

Chemtech Environmental Limited SOILS

Lab number			127675-14
Sample id			1707644
Depth (m)			-
Date sampled	T	T	-
Test	Method	Units	
4-Bromophenylphenyl ether	CE189	mg/kg	<0.1
Hexachlorobenzene	CE189	mg/kg	<0.1
Pentachlorophenol	CE189	mg/kg	<0.1
Carbazole	CE189	mg/kg	<0.1
Di-n-butyl phthalate	CE189	mg/kg	<0.1
Butylbenzyl phthalate	CE189	mg/kg	<0.1
Bis(2-ethylhexyl)phthalate	CE189	mg/kg	<0.1
Di-n-octyl phthalate	CE189	mg/kg	<0.1
SVOC Tentatively Identified Compounds	CE189	-	None Identified
11H-Benxo[b]flourene	CE189	-	-
11H-Benxo[b]flourene	CE189	-	-
1H-Indene, 2-phenyl-	CE189	-	-
4H-Cyclopental[def]phenanthrene	CE189	-	-
5,7-dimethylpyrimido-[3,4-a]indo	CE189	-	-
7H-Benzo[C]Flourene	CE189	-	-
9H-Xanthene	CE189	-	-
Benzo(b)naptho(1,2-d)furan	CE189	-	-
Benzo[e]pyrene	CE189	-	-
Benzo[e]pyrene	CE189	-	-
Benzo[ghi]perylene	CE189	-	-
Benzo[kl]xanthene	CE189	-	-
Dibenzo[def,mno]chrysene	CE189	-	-
IH- Phenalene	CE189		-
Iodine	CE189	-	-
Napthalene, 2-phenyl	CE189	-	-
Naptho[2,1-b]furan	CE189	-	
Triphenylene	CE189	-	-

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE189	N-Nitrosodimethylamine	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Phenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Bis(2-chloroethyl)ether	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Chlorophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	1,3-Dichlorobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	1,4-Dichlorobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Methylphenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	1,2-Dichlorobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Bis(2-chloroisopropyl)ether	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	3&4-Methylphenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	N-Nitrosodi-n-propylamine	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Hexachloroethane	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Nitrobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Isophorone	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4-Dimethylphenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Nitrophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Bis(2-chloroethoxy)methane	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4-Dichlorophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	1,2,4-Trichlorobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Chloroaniline	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Hexachlorobutadiene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Chloro-3-methylphenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Methylnaphthalene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	1-Methylnaphthalene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Hexachlorocyclopentadiene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4,6-Trichlorophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4,5-Trichlorophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Chloronaphthalene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Nitroaniline	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Dimethyl phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,6-Dinitrotoluene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	3-Nitroaniline	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4-Dinitrophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Nitrophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2,4-Dinitrotoluene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Dibenzofuran	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Diethyl phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Chlorophenylphenyl ether	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Nitroaniline	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	2-Methyl-4,6-dinitrophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Azobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	4-Bromophenylphenyl ether	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Hexachlorobenzene	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Pentachlorophenol	Solvent extraction, GC-MS	As received		0.1	mg/kg

Chemtech Environmental Limited

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE189	Carbazole	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Di-n-butyl phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Butylbenzyl phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Bis(2-ethylhexyl)phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	Di-n-octyl phthalate	Solvent extraction, GC-MS	As received		0.1	mg/kg
CE189	SVOC Tentatively Identified Compounds	Solvent extraction, GC-MS	As received		-	-

Chemtech Environmental Limited ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 4 weeks from initial receipt unless otherwise instructed.

For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet.

For soils and solids, analytical results are inclusive of stones, where applicable.

Moisture Content Calculated on a Wet Weight basis

Appendix VI

Page 1 of 9

Kiwa CMT

Unit 5 Prime Park Way

Prime Enterprise Park

T +44 (0)1332 383333

www.kiwa.co.uk/cmt

E uk.cmt.enquiries@kiwa.com

Kiwa CMT

Derby

DE1 3QB

Client: HSP Consulting Limited

Lawrence House 6 Meadowbank Way

Eastwood Nottinghamshire NG16 3SB

Date: 10th November 2023

Lab Ref: 71006

Originator: Laura Jones

Order Ref: SC14907

Site: Barry Waterfront College

Samples:

7No. samples weighing approximately 6-10kg each were sampled by the client and delivered to Kiwa CMT on 20th October 2023. Sampling certificates were not provided.

Requirements:

Determine the following:

- Plasticity Index of 1No. sample in accordance with BS EN ISO 17892-12:2018
- Water Content of 2No. samples in accordance with BS EN ISO 17892-1:2014
- Particle Size Distribution of 6No. samples in accordance with BS EN ISO 17892-1:2014.
- Organic Matter Content of 1No. sample in accordance with BS1377-3:2108

Results:

The individual results sheets may be viewed on pages 2 to 9 of this report and test results relate only to the items tested.

Kiwa CMT

Checked and approved by: R. Cartlidge Department Head

Certificate of Analysis for Plasticity Index & Water Content

Client: HSP Consulting Engineers Ltd. Site: Barry Waterfront College

Lab Ref: 71006 Date of Test: 25/10-01/11/2023

Test Methods: BS EN ISO 17892-12:2018 - Liquid Limit/Plastic Limit/Plasticity Index - Fall Cone Method

BS EN ISO 17892-1:2014 - Water Content

Results:

		LL Cone Data				% Retained	Modified	Soil			
Sample Ref	Material Description	Cone Pen	Water %	Factor ¹	LL (%)	PL (%)	PI (%)	on 425µm	PI (%)*	Classification	WC (%)
71006/BH01 2.00- 2.45m	Brown clayey silty very sandy GRAVEL	23.0 22.6	40.4 40.8	0.9526	39	24	15	83	3	CIM-SiM	12.7
71006/BH01 3.00- 3.45m	Brown sandy clayey GRAVEL with occasional cobbles and rootlets	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	10.8

The samples tested were disturbed and in their natural condition. Results relate only to the samples tested.

LL Test method - Fall Cone / One Point / Cone Spec 80g / 30 degrees

* Modified plasticity index relates to BRE Digest 240 that is not included in the UKAS schedule for this Laboratory.

LL = Liquid Limit

PL = Plastic Limit

PI = Plasticity Index

WC = Water Content

¹ BS EN 1377-2:1990 table 1

Kiwa CMT

Particle Size Distribution

Client:HSP Consulting EngineersSite:Barry Waterfront CollegeSample ref:71006/BH01 3.00-3.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-01/11/2023

Sample size (kg): 8

Description: Brown sandy clayey GRAVEL with occasional cobbles and rootlets

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	100
75	89
63	89
50	81
37.5	77
28	74
20	68
14	60
10	54
6.3	48
5	43
3.35	40
2	36
1.18	33
0.63	30
0.425	28
0.3	26
0.2	24
0.15	22
0.063	19

Soil Fraction	Total Percentage
Cobbles	11
Gravel	53
Sand	17
Silt/Clay	19

		0.063 mm	0.15 mm 0.2 mm 0.425 mm 0.63 mm	2 mm 3.35 mm 10 mm 14 mm 20 mm 28 mm	37.5 mm 50 mm 63 mm 75 mm 90 mm
100 T			i i i i i i i i i	: 1 1 1 1 1 1 1 1 1	1 1 2 1 7 1
				- 	-: :::/:: :
90					
			- 		/
80					1 1 : : : :
00					
					-
70					
				<u> </u>	- 1 1 1 1 1 1 1 1 1 1
		: :		:	1 1 1 1 1
60		+ + + + + + + + + + + + + + + + + + + +		· · · · · · · / · · ·	
				: : : : : : : : : : : : : : : : : : : :	
				· · · · · · / · · · · ·	1 1 2 1 1 1
50					
-			- 	<u> </u>	+ + + + + +
		:		· : /: : : : : :	
40			' 	- 	<u> </u>
40					
			-; 		
			-		
30		:		- 1 - 1 - 1 - 1 - 1 - 1	
					1 1 : 1 1 1
20					
			<u> </u>	<u> </u>	
10				- 	+ + + + + + + + + + + + + + + + + + + +
10					
			- 		1 1 . 1 1 1
0 +					
0.001	0.01	0.1 I	1 Particle Size (mm)	10	100

CLAY SILT		SAND		GRAVEL	COBBLES

Uniformity coefficient = N/A (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

Particle Size Distribution

Client:HSP Consulting EngineersSite:Barry Waterfront CollegeSample ref:71006/BH01 5.00-5.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-01/11/2023

Sample size (kg): 8

Description: Greenish grey sandy clayey GRAVEL with some cobbles.

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	100
75	86
63	86
50	86
37.5	79
28	75
20	63
14	58
10	52
6.3	44
5	41
3.35	37
2	30
1.18	25
0.63	21
0.425	19
0.3	18
0.2	17
0.15	17
0.063	15

Soil Fraction	Total Percentage
Cobbles	14
Gravel	56
Sand	15
Silt/Clay	15

		0.063 mm	0.15 mm 0.2 mm 0.3 mm	0.63 mm	2 mm 3.35 mm 6.3 mm	10 mm 14 mm 20 mm 28 mm 37.5 mm	50 mm 63 mm 75 mm 90 mm
00		i					
90 -							1 1 1 1
80							
70							
60							
50							
40		:					
30							
20							
10		:					
0.001	0.01	0.1		1		10	100

CLAY SILT SAND GRAVEL COBBL		Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
	CLAY		SILT			SAND			GRAVEL		COBBLES

Uniformity coefficient = N/A (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

Particle Size Distribution

Client: HSP Consulting Engineers
Site: Barry Waterfront College
Sample ref: 71006/BH01 7.00-7.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-01/11/2023

Sample size (kg): 7

Description: Brown sand to cobble sized siltstone/mudstone

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	100
75	100
63	91
50	84
37.5	75
28	68
20	54
14	45
10	36
6.3	24
5	17
3.35	13
2	8
1.18	6
0.63	5
0.425	4
0.3	4
0.2	4
0.15	4
0.063	3

Soil Fraction	Total Percentage
Cobbles	9
Gravel	83
Sand	5
Silt/Clay	3

100 90 80 70 60 40 40 40 10 10 10 10 10 10 10 10 10 1			0.063 mm 0.15 mm	0.425 mm 0.63 mm 1.18 mm	2 mm 3.35 mm 10 mm 14 mm 20 mm	37.5 mm 50 mm 63 mm 75 mm 90 mm
80	100					/ /
70	90 -					1
20 - 10 - 10 - 100	80 -					
20 10 0.001 0.001 0.001 0.001 0.001						
40 20 10 0,001 0,01 0,01 1 10 100	60					
20 10 0.001 0.01 1 1 10 100	50 -				- 	
20 10 10 10 10 100	40					
20 10 10 10 10 100	30 -					
10 0 10 0 10 10 10 10 100	20					
0.001 0.01 0.1 1 10 100	10					
		0.01		1		

	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
CLAY		SILT			SAND			GRAVEL		COBBLES

Uniformity coefficient = 9 (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

Particle Size Distribution

Client:HSP Consulting EngineersSite:Barry Waterfront CollegeSample ref:71006/BH01 9.00-9.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-01/11/2023

Sample size (kg): 9

Description: Grey sand to cobble size mudstone/siltstone

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	87
75	87
63	64
50	57
37.5	46
28	40
20	33
14	31
10	25
6.3	17
5	13
3.35	11
2	7
1.18	4
0.63	3
0.425	3
0.3	2
0.2	2
0.15	2
0.063	2

0.000	_
	•
Soil Fraction	Total
	Percentage
Cobbles	36
Gravel	57
Sand	5
Silt/Clay	2

		0.063 mm	0.15 mm 0.2 mm 0.3 mm	0.425 mm	1.18 mm	2 mm 3.35 mm	6.3 mm 10 mm 14 mm	20 mm 28 mm 37.5 mm 50 mm 75 mm 90 mm
100 T				1 : :		1 1		i (((((((((((((((((((
					1			
			-					
90			-		+++	1 11	1 1 1	
90					1	1 1		
					Hi-			
					1	1 11	1 1 1 1	
80								
•••					Hi	+ ++		
			- 1 1 1	1 1	H i		 	1 1 1 1 1
				1 1				
70			-	i :	1	+ +	+++++++++++++++++++++++++++++++++++++++	
			-		H i		 	
				i :		1 1		
			$\rightarrow + + +$		1	1 1	1 1 1 1	/
60					+:	+ + + + + + + + + + + + + + + + + + + +		/: //
			i					i il il / : ii il
			_	1 1		1 1		/ /
			-: $+$		H :	 		<u> </u>
50 +			!	1	1			1 1 1/ 1 1 1 1 1
			- !	1 :	1	+ +	1 1 1	/ /
					H :	 : 		
40				1 :	i		1 1 1	1 1/ 1 1 1 1 1 1
40				- 1		1 1		/
			-i $+$ $+$		++-	+ +		/ : : : : : : : : : : : : : : : : : : :
			- 1 1 1	1 :				
30 +			-					
					-			1 1 1 1 1 1 1
			- 1	!	1			
					H-i			
20			- 	1 :	11	: :		1 1 1 1 1 1
				1	1		/ !	
			-		H i	1 1		
40		: : : : : : : : : : : : : : : : : : : :	-		111	سنا ا		
10				- :				
								<u> </u>
						1 11	1 1 1	
0								
0.001	0.01	0	1		1		10	100
0.001	0.01	0.	Particle Size	, ,			10	100

	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
CLAY		SILT			SAND			GRAVEL		COBBLES

Uniformity coefficient = 18 (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

Particle Size Distribution

Client:HSP Consulting EngineersSite:Barry Waterfront CollegeSample ref:71006/BH01 12.00-12.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-10/11/2023

Sample size (kg): 9

Description: Brown very sandy very clayey GRAVEL

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	100
75	100
63	100
50	92
37.5	90
28	87
20	82
14	77
10	71
6.3	63
5	57
3.35	51
2	42
1.18	36
0.63	32
0.425	30
0.3	28
0.2	25
0.15	24
0.063	22

Soil Fraction	Total Percentage
Cobbles	0
Gravel	58
Sand	20
Silt/Clay	22

		0.063 mm	0.15 mm 0.2 mm 0.3 mm 0.425 mm	1.18 mm 2 mm	3.35 mm 6.3 mm 10 mm 14 mm 20 mm	37.5 mm 50 mm 63 mm 75 mm 90 mm
100		i				
90						
80						
70				1 1		
60		:				
50						
40 -						
30						
20						
10						
0						
0.001	0.01	0.1	Particle Size (mm)	1	10	100

	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
CLAY		SILT	•		SAND			GRAVEL		COBBLES	

Uniformity coefficient = N/A (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

Particle Size Distribution

Client:HSP Consulting EngineersSite:Barry Waterfront CollegeSample ref:71006/BH01 14.00-14.45m

Sampling cert.: Not given Lab ref.: 71006

Date Tested: 26/10-10/11/2023

Sample size (kg): 8

Description: Yellowish brown sandy clayey GRAVEL

Sampled by: Client Source: Site

Sieve	%
Size (mm)	Passing
125	100
90	100
75	100
63	100
50	96
37.5	90
28	82
20	67
14	64
10	58
6.3	52
5	47
3.35	44
2	38
1.18	33
0.63	29
0.425	27
0.3	25
0.2	23
0.15	22
0.063	20

Soil Fraction	Total Percentage
Cobbles	0
Gravel	62
Sand	18
Silt/Clay	20

			0.063 mm	0.15 mm 0.2 mm	0.3 mm 0.425 mm	0.63 mm	1.18 mm	2 mm 3.35 mm	6.3 mm	10 mm 14 mm	20 mm 28 mm 37.5 mm 50 mm 63 mm 75 mm 90 mm
100]					1 :		1	; ;	1	+ +	
			:		#					# 1	
90 -											
80 -						-					
70 -											1
60 -										/	
60 - 50 -											
40 -			:								
30 -											
20 -											
10 -									1		
0 -				\pm			<u> </u>	• 11			
0.0	001	0.01	0.1	Particle S	Size (mm)	1			10	100

 Fine
 Medium
 Coarse
 Fine
 Medium
 Coarse
 Fine
 Medium
 Coarse

 CLAY
 SILT
 SAND
 GRAVEL
 COBBLES

Uniformity coefficient = N/A (For information only)

Comments: Test carried out in accordance with BS EN ISO 17892-4: 2016 Clause 5.2.

Kiwa CMT

31/10/2023

Kiwa CMT

CERTIFICATE OF ANALYSIS

Client **HSP Consulting** Job No. 71006 **Engineers Ltd Contact** N/A Site **Barry Waterfront College Order Ref** SC14907 **Date Received** 26/10/2023 **Sampling Certificate**

Sample Description Clayey mud/siltstone **Date Reported** 31/10/2023

Analyte: As: Units: BH1 5-5.45

N/A

Organic matter content of material passing 2mm seive

%

0.4

Date Analysed

Test methods: Organic matter as described in BS1377: Pt 3: 2018: Cl 3

Opinions and interpretations expressed herein are outside the scope of UKAS

Signed:

B Fairweather PP Environmental Technician Approved:

D Mullee

Department Manager

Further interpretation or advice is a chargeable service and may be obtained by contacting the above signatory.

Results Summary

Apex Testing Solutions Limited

Sturmi Way Village Farm Industrial Estate

Pyle Bridgend CF33 6BZ

Telephone: 01656 746762

E-mail: andrew.grogan@apex-drilling.com
laura.davis@apex-drilling.com

Reporting Details		Key Information	
Company Name:	HSP Consulting	Site Name:	CAVAC BWF
Address:	Lawrence House		
	Unit 6, Meadowbank Way	Job Number:	D23457
	Nottingham	Date Received:	19/10/2023
	NG16 3SB	Job Coordinator:	L. Davies
Contact Name:	Laura Jones		
Contact Number:			

Item No.	Tests Undertaken	Number of Tests
1 2 3 4 5 6	Water Content - ISO 17892 2014+A1:2022 Atterburg Limits (4 point) - BS1377-2: 1990 Particle Size Distribution - BS1377-2: 1990 Sedimentation by Pipette Method - BS1377-2: 1990 OMC - BS1377-4: 1990 using 2.5kg Rammer in 1L mould # Organic Matter	10 6 10 4 5 3

Results Issued: 30/10/2023

Comments

Results herein relate only to samples received in the laboratory and where not sampled by Apex Testing Solutions personnel relate to the samples as received.

Where tests are UKAS accredited any Opinion and/or Interpretation expressed herein are outside the scope of the UKAS Accreditation. The reports shall not be reproduced in full without the written approval of the laboratory.

Please contact the job coordinator should any further information be required.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Apex Testing Solutions Limited Sturmi Way Village Farm Industrial Estate Pyle Bridgend CF33 6BZ

Attention: Laura Davies

CERTIFICATE OF ANALYSIS

Date of report Generation: 30 October 2023

Customer: Apex Testing Solutions Limited

Sample Delivery Group (SDG): 231021-37 Your Reference: D23457 Location: **CAVAC BWF** Report No: 709173 Order Number: ATS 1869

We received 3 samples on Saturday October 21, 2023 and 3 of these samples were scheduled for analysis which was completed on Monday October 30, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955.

Version: 3.6 Version Issued: 30/10/2023

SDG: 231021-37

Client Ref.: D23457

CERTIFICATE OF ANALYSIS

Report Number: 709173 Location: CAVAC BWF Superseded Report:

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
28821039	TP05		1.70 - 1.90	20/10/2023
28821041	TP08		1.70 - 1.90	20/10/2023
28821043	TP10		1.60 - 1.70	20/10/2023

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

CERTIFICATE OF ANALYSIS

ALS

SDG: 231021-37 **Client Ref**.: D23457

Report Number: 709173 Location: CAVAC BWF Superseded Report:

Results Legend X Test N No Determination	Lab Sample No(s)			28821041	28821043
Possible Sample Types -	Custome Sample Refe		TP05	TP08	TP10
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence			
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (n	n)	1.70 - 1.90	1.70 - 1.90	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	er	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)
	Sample Ty	/pe	S	S	S
Sample description	All	NDPs: 0 Tests: 3			
			Х	X	Х
Total Organic Carbon	All	NDPs: 0 Tests: 3			
			Х	X	X

Validated

SDG: 231021-37 **Client Ref.:** D23457

Report Number: 709173 Location: CAVAC BWF Superseded Report:

Sample Descriptions

Grain Sizes

very fine <0.0	0.063mm fine 0.06	3mm - 0.1mm m	nedium 0.1mn	n - 2mm coai	rse 2mm - 1	.0mm very coa	rse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
28821039	TP05	1.70 - 1.90	Dark Brown	Sandy Loam	Stones	Vegetation	
28821041	TP08	1.70 - 1.90	Dark Brown	Sandy Clay Loam	Stones	None	
28821043	TP10	1.60 - 1.70	Dark Brown	Sandy Clay Loam	Stones	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 231021-37 **Client Ref**.: D23457

Report Number: 709173 Location: CAVAC BWF Superseded Report:

Results Legend # ISO17025 accredited.	Cust	omer Sample Ref.	TP05	TP08	TP10		
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample.		Depth (m)	1.70 - 1.90	1.70 - 1.90	1.60 - 1.70		
tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor re	port for	Sample Type Date Sampled	Soil/Solid (S) 20/10/2023	Soil/Solid (S) 20/10/2023	Soil/Solid (S) 20/10/2023		
accreditation status. ** % recovery of the surrogate standard to c	heck the	Sample Time	20/10/2023	20/10/2023	20/10/2023		
accreditation status. ** % recovery of the surrogate standard to c efficiency of the method. The results of in compounds within samples aren't correct	dividual ed for the	Date Received	21/10/2023	21/10/2023	21/10/2023		
		SDG Ref	231021-37 28821039	231021-37 28821041	231021-37 28821043		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	L.	ab Sample No.(s) AGS Reference	20021000	20021011	20021010		
Component	LOD/Units	Method					
Moisture Content Ratio (% of as	%	PM024	9.7	10	13		
received sample)							
Soil Organic Matter (SOM)	<0.35 %	TM132	5.81	1.78	12.1		
			#	#	#		

Validated

SDG: 231021-37 **Client Ref**.: D23457 Report Number: 709173 Location: CAVAC BWF

Superseded Report:

Table of Results - Appendix

Method No	Description
PM024	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM132	ELTRA CS800 Operators Guide

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

Report Number: 709173 Superseded Report: Location: CAVAC BWF

Test Completion Dates

Lab Sample No(s)	28821039	28821041	28821043
Customer Sample Ref.	TP05	TP08	TP10
AGS Ref.			
Depth		1.70 - 1.90	1.60 - 1.70
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Sample description	25-Oct-2023	25-Oct-2023	25-Oct-2023
Total Organic Carbon	30-Oct-2023	30-Oct-2023	30-Oct-2023

Client Ref.: D23457

12:41:25 30/10/2023

SDG: 231021-37 **Client Ref:** D23457

Report Number: 709173 Location: CAVAC BWF **Superseded Report:**

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of 15 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogran is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
8	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brown Asbestos
Cro a dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting
Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34820

NG16 3SB

Site Ref / Hole ID:

TP5

Depth (m):

0.70

0.90

Sample No:

No

Sample Type:

Bulk

Sampling Certificate

Received:

Material Description:

Brown clayey sandy

GRAVEL

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

21 October 2023

Test Results

Moisture Content (%)

13.0

Remarks:

QA Ref.

A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

27/10/2023

МС

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D23457

CAVAC BWF

Client: **HSP** Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

NG16 3SB

Site Ref / Hole ID:

TP5

34820

Depth (m):

0.70

- 0.90

Sample No:

Sampling Certificate No

Sample Type:

Bulk

Received:

Material Description:

Brown clayey sandy GRAVEL

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

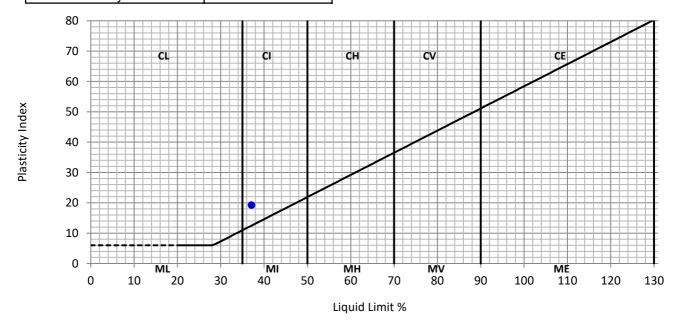
Client

Specification:

BS1377

Date Received:

19 October 2023


Date Tested:

26 October 2023

Test Results

Liquid Limit	37	%
Plastic Limit	18	%
Plasticity Index	19	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retaine	d on 425µm sieve:	67	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

27/10/2023

ATT

Fig.

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name:

D23457

CAVAC BWF

Client:

HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34820

TP5

Depth (m):

0.70 - 0.90

Sample No:

Sample Type: Bulk

Sampling Certificate

Site Ref / Hole ID:

Received:

No

N/a

Material Description:

Brown clayey sandy GRAVEL

Location in Works:

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

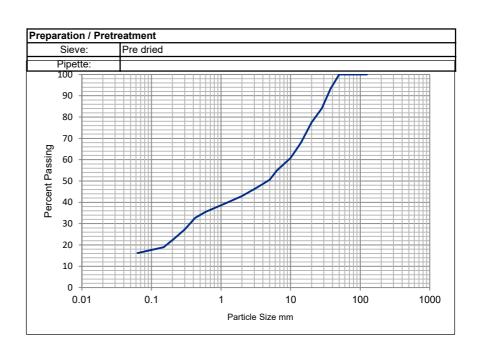
Ex-Site BS1377

Sampled By:

Client

Specification:

Date Tested:


24 October 2023

Date Received:

19 October 2023

Test Results

Sieving			
Particle Size % Passing			
mm	70 Fassing		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	84		
20	78		
14	68		
10	61		
6.3	55		
5.0	51		
3.35	47		
2.00	43		
1.18	40		
0.600	36		
0.425	33		
0.300	27		
0.212	23		
0.150	19		
0.063	16		

Sample Porti	ons Particle Density Mg/m3 Uniformity Coefficient		
Cobbles / Boulders	0	N/A	Cilionity Coefficient
Gravel	57	IN/A	D ₆₀ / D ₁₀
Sand	27	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	16	7.8	n/a

Remarks:

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgen CF33 6BZ
Tel: 01656 746762 Fax: 01656 749096

	dia
	(₽∢)
d,	UKAS
	7771

Approver

G Llewellyn

Date

G Llewellyn, Senior Technician

27/10/2023

Fig

PSD

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

CAVAC BWF Project Name:

Client: **HSP Consulting**

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34821

NG16 3SB

Site Ref / Hole ID:

TP6

Depth (m):

2.50

2.70

Sample No:

Received:

Sample Type:

Bulk

Sampling Certificate

No

Material Description:

light brown slightly

gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)

15.6

Remarks:

QA Ref.

EN ISO 17892-1:2014 A1:2022 **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

26/10/2023

MC

A Grogan, Laboratory Manager

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34822

NG16 3SB

Site Ref / Hole ID:

TP6

Depth (m):

2.70

3.00

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Greyish brown sandy

gravelly CLAY with low cobble content

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)

17.3

Remarks:

QA Ref.

B92-2022 A **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

27/10/2023

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D23457

Client: **CAVAC BWF**

HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34822 NG16 3SB

Site Ref / Hole ID:

TP6

Depth (m):

2.70

- 3.00

Sample No:

Received:

Sample Type:

Material Description:

Bulk

Greyish brown sandy gravelly

CLAY with low cobble

content

Location in Works:

Sampling Certificate No

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

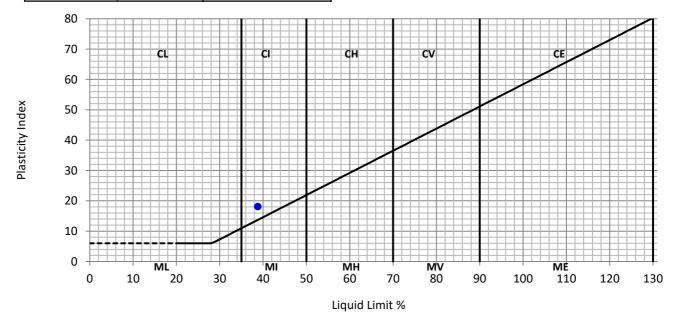
Client

Specification:

BS1377

Date Received:

19 October 2023


Date Tested:

26 October 2023

Test Results

Liquid Limit	39	%
Plastic Limit	21	%
Plasticity Index	18	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve: 58 %			%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig.

27/10/2023

ATT

A Grogan, Laboratory Manager

A Grogan

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name:

D23457

CAVAC BWF

Client:

HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34822

NG16 3SB

Site Ref / Hole ID:

TP6

Depth (m):

2.70 - 3.00

Bulk

Sample No:

Sample Type:

Sampling Certificate

Received:

No

N/a

Material Description:

Greyish brown sandy gravelly

CLAY with low cobble content

Location in Works:

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

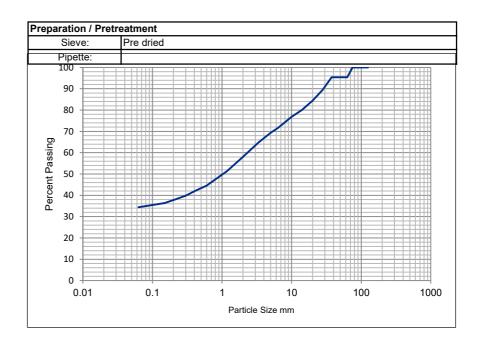
Ex-Site

Sampled By:

Client

Specification:

BS1377


Date Received:

19 October 2023

Date Tested:

Test Results

Sieving			
Particle Size	% Passing		
mm	70 Fassing		
125	100		
90	100		
75	100		
63	95		
50	95		
37.5	95		
28	90		
20	84		
14	80		
10	77		
6.3	72		
5.0	69		
3.35	65		
2.00	58		
1.18	51		
0.600	45		
0.425	42		
0.300	40		
0.212	38		
0.150	36		
0.063	34		

Sample Porti	ons	Particle Density Mg/m3	Uniformity Coefficient
Cobbles / Boulders	5	N/A	Childrinity Coefficient
Gravel	37	IN/A	D ₆₀ / D ₁₀
Sand	24	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	34	7.5	n/a

Remarks:

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

٦	ci a	35
	(≯∢)	100
ŀ	UKAS	
•	7771	

Approver

ver G Llewellyn Date

27/10/2023

Fig

G Llewellyn, Senior Technician

PSD

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS1377:Part 4:1990

Project No: Project Name: D23457 **CAVAC BWF**

Client: **HSP** Consulting Address:

Lawrence House

NG16 3SB

Unit 6, Meadowbank Way Nottingham

ATS Sample No: 34823

TP9

Depth (m):

Sample Type:

0.70

Sample No:

Bulk

Sampling Certificate Received:

Site Ref / Hole ID:

No

Material Description:

Light brown slightly gravelly

slightly sandy CLAY

Location in Works:

N/A

Material Source:

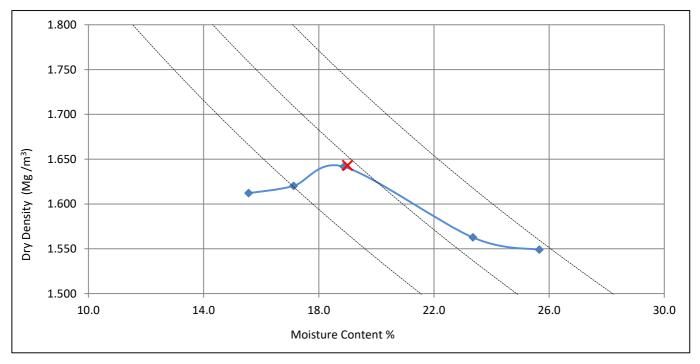
Site Generated

Date Sampled:

Unknown

Material Supplier:

Ex-Site BS1377


Sampled By:

Client

Specification: **Date Tested:**

24 October 2023

Date Received: 19 October 2023

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.60	assumed
Material > 37.5mm	0	%
Material < 37.5mm > 20mm	0	%

Derived Parameters ×	
Maximum Dry Density, Mg/m ³	1.64
Optimum Moisture Content %	19

Remarks:

NMC =25.8 %

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing	Solutions
---------------------	-----------

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver G Llewellyn Date

Fig.

30/10/2023

COMP

G Llewellyn, Senior Technician

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34824

Depth (m): 1.50 - 1.70

Sample No: Sample Type: Bulk

Sampling Certificate No

TP9

Received:

Site Ref / Hole ID:

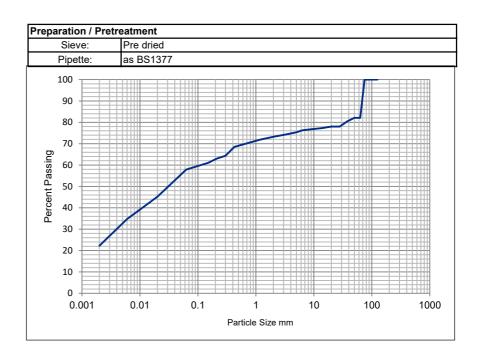
Material Description: Light brown slightly gravelly slightly

sandy CLAY with medium cobble

content

Location in Works: N/a Material Source: Ex-Site

Date Sampled: Unknown Material Supplier: Ex-Site


Sampled By: Client Specification: BS1377

Date Received: 19 October 2023 **Date Tested:** 26/10/023

Test Results

Sieving			
Particle Size	% Passing		
mm	70 T d55111g		
125	100		
90	100		
75	100		
63	82		
50	82		
37.5	80		
28	78		
20	78		
14	77		
10	77		
6.3	76		
5.0	75		
3.35	74		
2.00	73		
1.18	72		
0.600	70		
0.425	69		
0.300	64		
0.212	63		
0.150	61		
0.063	58		

Sedimentation			
Particle Size	% Passing		
mm	70 Fassing		
0.0201	45		
0.0060	35		
0.0020	22		

Sample Portions		Particle Density Mg/m3		Uniformity Coefficient
Cobbles / Boulders	18	2.65	assumed	Officiality Coefficient
Gravel	9	2.05	assumeu	D ₆₀ / D ₁₀
Sand	15	Dry mass of	sample, kg	D ₆₀ / D ₁₀
Silt	36	5.	1	n/a
Clay	22]	-	II/a

Remarks:

QA Ref.

BS1377 - 2
Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

_	onte.	30
		e=
	(M)	Ī
d,	UKAS	
		•

7771

Approver	
	G Llewellyn

Date	,		
	_		_

Fig

27/10/2023

PSD

G Llewellyn, Senior Technician

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House
Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34825

NG16 3SB

Site Ref / Hole ID:

TP9

Depth (m):

1.60

1.80

Sample No:

No

Sample Type:

Bulk

....

. . .

Sampling Certificate

Received:

Material Description:

Light brown slightly

gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)

23.4

Remarks:

QA Ref.

EN ISO 17892-1:2014 A1:2022 **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

26/10/2023

МС

A Grogan, Laboratory Manager

Te

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34826

NG16 3SB

Site Ref / Hole ID:

TP9

Depth (m):

2.50

2.70

Sample No:

Sample Type:

Bulk

2.70

Sampling Certificate

Received:

No

Material Description:

Greyish brown slightly sandy clayey GRAVEL

with medium cobble

content

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

21 October 2023

Test Results

Moisture Content (%)

11.3

Remarks:

QA Ref.

EN ISO 17892-1:2014 A1:2022 A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

26/10/2023

МС

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D23457

CAVAC BWF

Client: **HSP** Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34826 NG16 3SB

Site Ref / Hole ID:

TP9

Depth (m):

Sample Type:

2.50

Bulk

- 2.70

Sample No:

Sampling Certificate No

Received:

Material Description:

Greyish brown slightly sandy

clayey GRAVEL with medium

cobble content

Location in Works: N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

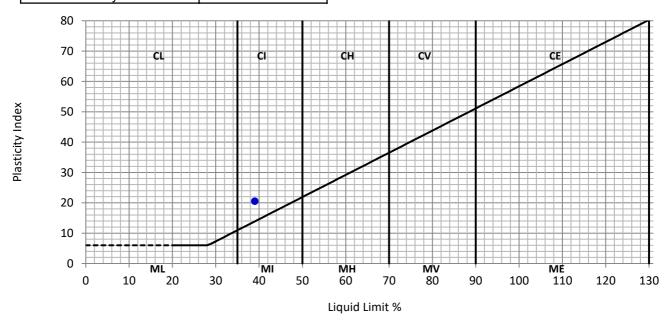
Client

Specification:

BS1377

Date Received:

19 October 2023


Date Tested:

24 October 2023

Test Results

Liquid Limit	39	%
Plastic Limit	18	%
Plasticity Index	21	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	on 425µm sieve:	77	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

26/10/2023

ATT

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name: D23457

CAVAC BWF

Client:

HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34826

NG16 3SB

Site Ref / Hole ID:

TP9

Depth (m):

2.50 - 2.70

Bulk

Sample No:

Received:

No

N/a

Sample Type:

Sampling Certificate

Material Description:

Greyish brown slightly sandy

clayey GRAVEL with medium

cobble content

Location in Works:

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

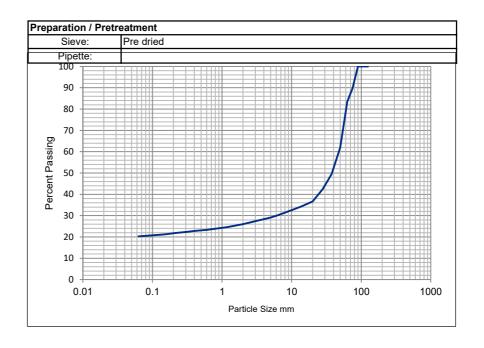
Ex-Site

Sampled By:

Client

Specification:

BS1377


Date Received:

19 October 2023

Date Tested: 26 October 2023

Test Results

Sieving			
Particle Size	% Passing		
mm	70 Fassing		
125	100		
90	100		
75	90		
63	83		
50	62		
37.5	50		
28	42		
20	37		
14	34		
10	33		
6.3	30		
5.0	29		
3.35	28		
2.00	26		
1.18	25		
0.600	23		
0.425	23		
0.300	22		
0.212	22		
0.150	21		
0.063	20		

Sample Porti	ons	Particle Density Mg/m3	Uniformity Coefficient
Cobbles / Boulders	17	N/A	Cilionity Coefficient
Gravel	57	IN/A	D ₆₀ / D ₁₀
Sand	6	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	20	11.1	n/a

G Llewellyn

Remarks:

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

CF33 6BZ

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, Tel: 01656 746762 Fax: 01656 749096

٦	ci a	35
	(≯∢)	100
ŀ	UKAS	
•	7771	

Approver

Date

G Llewellyn, Senior Technician

Fig

26/10/2023

PSD

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS1377:Part 4:1990

Project No: Project Name:

D23457 CAVAC BWF

Client:

HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34827

NG16 3SB

Site Ref / Hole ID:

TP10

Depth (m):

0.70

Bulk

Sample No:

N/A

Sample Type:

Brownish grey sandy clayey

Sampling Certificate Received:

No

Material Description:

GRAVEL

Material Source:

Site Generated

Date Sampled:

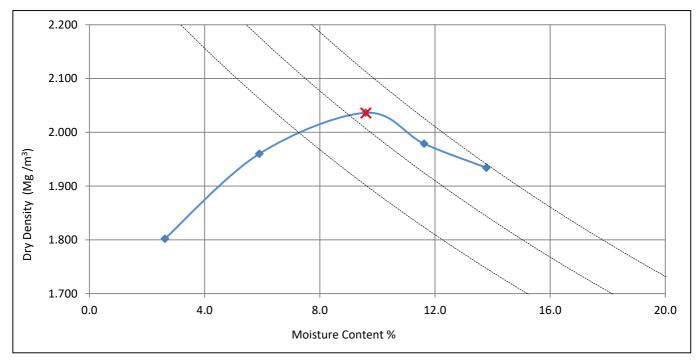
Location in Works:

Unknown

Material Supplier:

Ex-Site BS1377

Sampled By:


Client

Specification:

Date Tested:

24 October 2023

Date Received: 19 October 2023

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.65	assumed
Material > 37.5mm	3	%
Material < 37.5mm > 20mm	10	%

Derived Parameters ×	
Maximum Dry Density, Mg/m ³	2.04
Optimum Moisture Content %	9.6

Remarks:

NMC = 11.6%

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS
7774

Approver *G Llewellyn*

Date

Fig.

27/10/2023

COMP

G Llewellyn, Senior Technician

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34828

Depth (m): 1.70 - 1.90

Sample No: Sample Type: Bulk

Sampling Certificate N

Site Ref / Hole ID:

Received:

Date Sampled:

No

TP10

Material Description: Dark brown sandy gravelly CLAY

Ex-Site

Location in Works: N/a

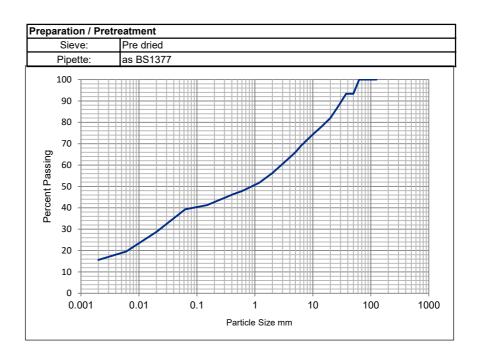
Unknown

Material Supplier: Ex-Site

Material Source:

Sampled By: Client

Specification: BS1377


Date Received: 19 October 2023

Date Tested: 27 October 2023

Test Results

Sieving		
Particle Size	% Passing	
mm	70 F assiriy	
125	100	
90	100	
75	100	
63	100	
50	93	
37.5	93	
28	88	
20	82	
14	78	
10	74	
6.3	69	
5.0	66	
3.35	62	
2.00	56	
1.18	52	
0.600	48	
0.425	46	
0.300	45	
0.212	43	
0.150	41	
0.063	39	

Sedimentation		
Particle Size	% Passing	
mm	70 Fassing	
0.0201	29	
0.0060	20	
0.0020	16	

Sample Portions		Particle Der	nsity Mg/m3	Uniformity Coefficient
Cobbles / Boulders	0	2.65 assumed		Officiality Coefficient
Gravel	44	2.05	assumeu	D ₆₀ / D ₁₀
Sand	17	Dry mass of sample, kg		D ₆₀ / D ₁₀
Silt	24	5.9		n/a
Clay	16			II/a

Remarks:

QA Ref.

BS1377 - 2

Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

		Аp
	(⊁∢)	
١,	UKAS	
	TESTING	

prover	
	G Llewellyn

27/10/203

Fig

27/10/2023

PSD

7771 G Llewellyn, Senior Technician

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS1377:Part 4:1990

Project No: Project Name: D23457 **CAVAC BWF** Client: **HSP** Consulting Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34829

TP8

Depth (m):

0.70

Bulk

Sample No:

No

Sample Type:

Material Description:

Brown slightly sandy gravelly

CLAY

Sampling Certificate

Location in Works:

Site Ref / Hole ID:

Received:

N/A

Material Source:

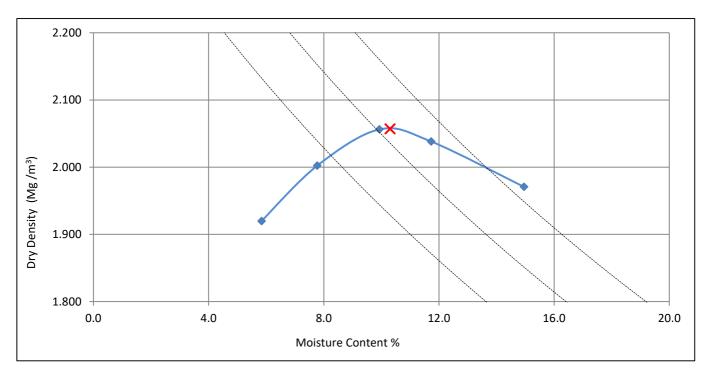
Site Generated

Date Sampled:

Unknown

Material Supplier:

Ex-Site BS1377


Sampled By:

Client

Specification: **Date Tested:**

24 October 2023

Date Received: 19 October 2023

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.75	assumed
Material > 37.5mm	3	%
Material < 37.5mm > 20mm	14	%

Derived Parameters ×	
Maximum Dry Density, Mg/m ³	2.06
Optimum Moisture Content %	10.3

Remarks:

NMC = 11.7%

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

7771

Approver

A Grogan

Date

Fig.

26/10/2023

COMP

A Grogan, Laboratory Manager

BS1377 - 4 Rev. 2.0 Tel: 01656 746762 Fax: 01656 749096

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34830

NG16 3SB

Site Ref / Hole ID:

Sampling Certificate

TP8

Depth (m):

1.70

1.90

Sample No:

No

Sample Type:

Bulk

Brown gravelly CLAY

Received:

Material Description:

_..... g. , __.

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)

14.2

Remarks:

QA Ref.

A (

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

26/10/2023

MC

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

D23457 **Project No:**

Project Name: CAVAC BWF

TP8

Client: **HSP Consulting**

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34831

Site Ref / Hole ID:

2.50 -2.70 Depth (m):

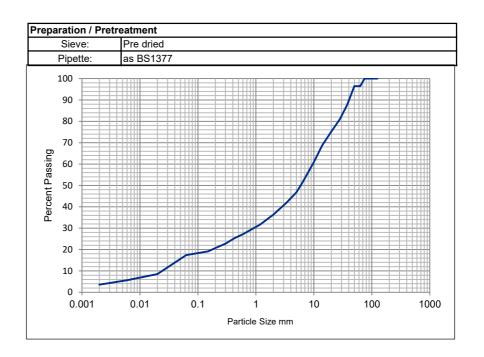
Sample No: Sample Type: Bulk

Sampling Certificate Reddish brown silty sandy No

Material Description: Received: GRAVEL with low cobble content

Location in Works: N/a **Material Source:** Ex-Site

Unknown **Material Supplier:** Ex-Site **Date Sampled:**


Sampled By: Client Specification: BS1377

19 October 2023 **Date Tested:** 27 October 2023 **Date Received:**

Test Results

Sieving		
Particle Size	% Passing	
mm	70 T 433111g	
125	100	
90	100	
75	100	
63	96	
50	96	
37.5	88	
28	81	
20	75	
14	69	
10	61	
6.3	51	
5.0	47	
3.35	42	
2.00	36	
1.18	32	
0.600	27	
0.425	25	
0.300	23	
0.212	21	
0.150	19	
0.063	17	

Sedimentation		
Particle Size	% Passing	
mm	70 F assirig	
0.0201	9	
0.0060	6	
0.0020	4	
•		

Sample Porti	Sample Portions Part		nsity Mg/m3	Uniformity Coefficient
Cobbles / Boulders	4	2.65	assumed	Officiality Coefficient
Gravel	60	2.05	assumeu	D ₆₀ / D ₁₀
Sand	19	Dry mass of sample, kg		D ₆₀ / D ₁₀
Silt	14	10	0	n/a
Clay	4]	.0	II/a

Remarks:

QA Ref. BS1377 - 2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762	Fax: 01656 749096

_	d
	(₩)
,	UKAS

pprover	
	G Llewelly

Date	

Fig

27/10/2023

PSD

7771 G Llewellyn, Senior Technician

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting
Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34832

NG16 3SB

Site Ref / Hole ID:

TP7

Depth (m):

0.70

1.00

Sample No:

ate No

Received:

Sample Type:

Bulk

Sampling Certificate

ooi tiiriou

Material Description:

Dark brown clayey sandy

GRAVEL

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)	5.4
----------------------	-----

Remarks:

QA Ref.

A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

27/10/2023

МС

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D23457

CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

NG16 3SB

Site Ref / Hole ID:

TP7

34832

Depth (m):

0.70

- 1.00

Sample No:

. .

Sample Type:

Bulk

Received:

Sampling Certificate No

Material Description:

Dark brown clayey sandy

GRAVEL

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

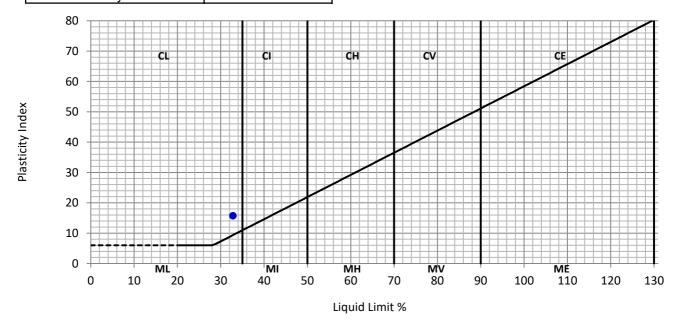
Sampled By:

Client

Specification:

BS1377

Date Received:


19 October 2023

Date Tested: 26 October 2023

Test Results

Liquid Limit	33	%
Plastic Limit	17	%
Plasticity Index	16	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	d on 425µm sieve:	77	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ
Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

27/10/2023

ATT

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name: D23457

CAVAC BWF

Client:

HSP Consulting

Address

Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34832

NG16 3SB

Site Ref / Hole ID:

TP7

Depth (m):

0.70 - 1.00

Sample No:

Sample Type:

Sampling Certificate

Received:

No

Material Description:

Dark brown clayey sandy GRAVEL

Location in Works:

N/a

Material Source:

Ex-Site

Bulk

Date Sampled:

Unknown

Material Supplier:

Ex-Site

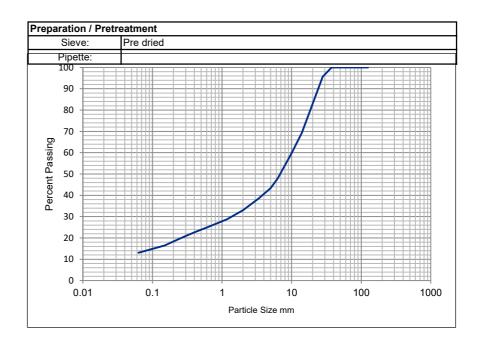
Sampled By:

Client

Specification:

BS1377

26 October 2023


Date Received:

19 October 2023

Date Tested:

Test Results

Sieving		
Particle Size	% Passing	
mm	70 Fassing	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	96	
20	83	
14	69	
10	60	
6.3	48	
5.0	43	
3.35	39	
2.00	33	
1.18	29	
0.600	25	
0.425	23	
0.300	21	
0.212	19	
0.150	16	
0.063	13	

Sample Porti	ons	Particle Density Mg/m3 Uniformity Coefficient	
Cobbles / Boulders	0	N/A	Cilionity Coefficient
Gravel	67	IN/A	D ₆₀ / D ₁₀
Sand	20	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	13	3.7	n/a

G Llewellyn

Remarks:

QA R	ef.
------	-----

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS
7771

Approver

Date

G Llewellyn, Senior Technician

27/10/2023

Fig

PSD

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name: D23457

CAVAC BWF

Client:

HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34833

NG16 3SB

Site Ref / Hole ID:

TP7

Depth (m):

1.50 - 1.70

Sample No:

Sample Type:

Sampling Certificate

Received:

No

N/a

Unknown

Material Description:

Material Source:

Specification:

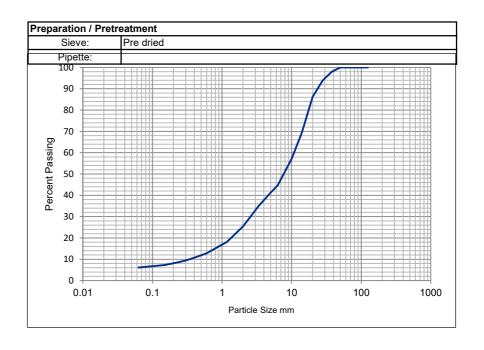
Dark brown sandy GRAVEL

Location in Works:

Ex-Site

Bulk

Date Sampled:


Material Supplier: Ex-Site

Sampled By: Client **BS1377**

Date Received: 19 October 2023 **Date Tested:** 27 October 2023

Test Results

Sieving		
Particle Size	% Passing	
mm	70 Fassing	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	98	
28	94	
20	86	
14	69	
10	57	
6.3	45	
5.0	41	
3.35	35	
2.00	25	
1.18	18	
0.600	13	
0.425	11	
0.300	9	
0.212	8	
0.150	7	
0.063	6	

Sample Portions		Particle Density Mg/m3	Uniformity Coefficient	
Cobbles / Boulders	0	N/A		
Gravel	75	IN/A	D ₆₀ / D ₁₀	
Sand	19	Dry mass of sample, kg	D ₆₀ / D ₁₀	
Silt / Clay	6	8.1	n/a	

G Llewellyn

Remarks:

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

	cia	S
		1
		Į
,	UKAS	
	7771	

Approver

Date

G Llewellyn, Senior Technician

27/10/2023

Fig

PSD

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

CAVAC BWF Project Name:

Client: **HSP Consulting**

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34834

NG16 3SB

Site Ref / Hole ID:

TP3

Depth (m):

0.70

1.00

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Brownish grey slightly gravelly slightly sandy

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)	26.9
----------------------	------

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

26/10/203

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D23457

CAVAC BWF

Client: **HSP** Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

NG16 3SB

Site Ref / Hole ID:

TP3

34834

Depth (m):

Sample Type:

0.70

Bulk

- 1.00

Sample No:

Sampling Certificate No

Received:

Material Description:

Brownish grey slightly

gravelly slightly sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

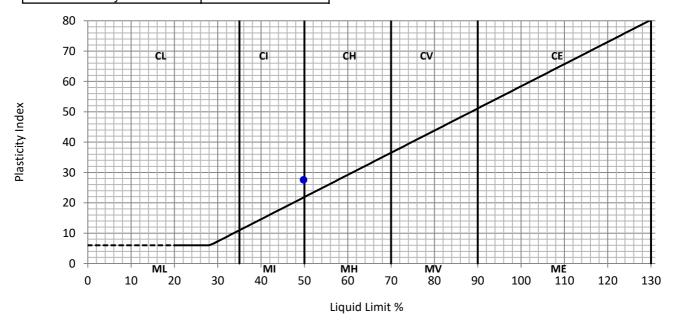
Sampled By:

Client

Specification:

BS1377

Date Received:


19 October 2023

Date Tested: 25 October 2023

Test Results

Liquid Limit	50	%
Plastic Limit	22	%
Plasticity Index	28	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve:		11	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

26/10/2023

ATT

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name:

D23457

CAVAC BWF

Client:

HSP Consulting

Address

Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

NG16 3SB

Site Ref / Hole ID:

TP3

34834

Depth (m):

0.70 - 1.00

Sample No:

Sample Type:

Sampling Certificate

Received:

No

N/a

Material Description:

Brownish grey slightly gravelly

slightly sandy CLAY

Location in Works:

Ex-Site

Bulk

Date Sampled:

Material Supplier:

Material Source:

Ex-Site

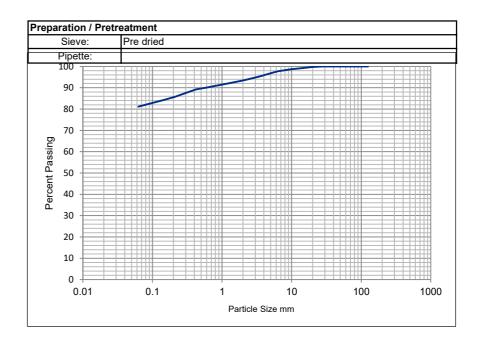
Sampled By:

Client

Unknown

Specification:

BS1377


Date Received:

19 October 2023

Date Tested: 26 October 2023

Test Results

Particle Size mm % Passing 125 100 90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 99 10 99 6.3 98	Sieving			
125 100 90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 99 10 99	Particle Size	% Passing		
90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 99 10 99	mm	70 F assiriy		
75 100 63 100 50 100 37.5 100 28 100 20 100 14 99 10 99	125	100		
63 100 50 100 37.5 100 28 100 20 100 14 99 10 99	90	100		
50 100 37.5 100 28 100 20 100 14 99 10 99	75	100		
37.5 100 28 100 20 100 14 99 10 99	63	100		
28 100 20 100 14 99 10 99	50	100		
20 100 14 99 10 99	37.5	100		
14 99 10 99	28	100		
10 99	20	100		
	14	99		
6.3 98	10	99		
	6.3	98		
5.0 97	5.0	97		
3.35 95	3.35	95		
2.00 93	2.00	93		
1.18 92	1.18	92		
0.600 90	0.600	90		
0.425 89	0.425	89		
0.300 88	0.300	88		
0.212 86	0.212	86		
0.150 84	0.150	84		
0.063 81	0.063	81		

Sample Portions		Particle Density Mg/m3	Uniformity Coefficient	
Cobbles / Boulders	0	N/A	Officiality Coefficient	
Gravel	7	IN/A	D ₆₀ / D ₁₀	
Sand	Sand 12 Dry mass of		D ₆₀ / D ₁₀	
Silt / Clay	81	6.9	n/a	

G Llewellyn

Remarks:

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

	rain	
	(₹4)	Ì
	UKAS	
,	1=STING	
		ŕ

Approver

rover

Date

20

Fig

26/10/2023

PSD

771 G L lewe

7771

G Llewellyn, Senior Technician

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS1377:Part 4:1990

Project No: Project Name: D23457 **CAVAC BWF** Client: **HSP** Consulting Address:

Lawrence House Unit 6, Meadowbank Way

Nottingham NG16 3SB

ATS Sample No: 34834

Site Ref / Hole ID:

Sampling Certificate

Location in Works:

TP3

Depth (m):

Sample Type:

0.70

Bulk

Sample No:

No

Brownish grey slightly gravelly

Material Description:

slightly sandy CLAY

Received:

N/A

Material Source:

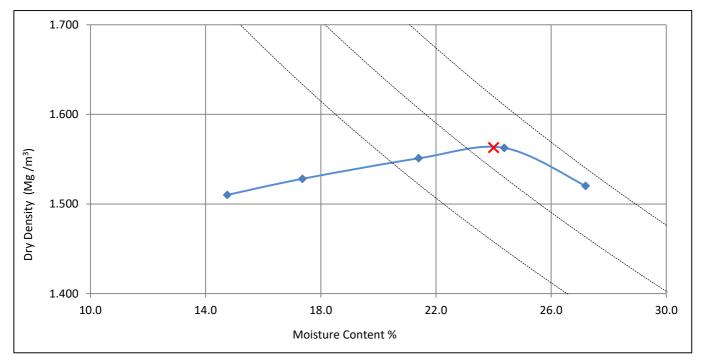
Site Generated

Date Sampled:

Unknown

Material Supplier:

Ex-Site BS1377


Sampled By:

Client

Specification: **Date Tested:**

23 October 2023

19 October 2023 **Date Received:**

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.65	assumed
Material > 37.5mm	0	%
Material < 37.5mm > 20mm	0	%

Derived Parameters ×	
Maximum Dry Density, Mg/m ³	1.56
Optimum Moisture Content %	24

Remarks:

NMC =26.9 %

QA Ref.

BS1377 - 4

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

UKAS
7771

Approver	
	G Llewellyn

Date

Fig.

26/10/2023

COMP

G Llewellyn, Senior Technician

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34835

NG16 3SB

Site Ref / Hole ID:

TP4

Depth (m):

0.70

1.00

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Brown slightly sandy gravelly CLAY with low

cobbe content

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)	15.7
----------------------	------

Remarks:

QA Ref.

A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

27/10/2023

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D23457

CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

NG16 3SB

Site Ref / Hole ID:

TP4

34835

Depth (m):

Sample Type:

0.70

Bulk

- 1.00

Sample No:

Received:

Sampling Certificate No

Material Description:

Brown slightly sandy gravelly

CLAY with low cobbe content

Location in Works:

N/a

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Material Source:

Ex-Site

Sampled By:

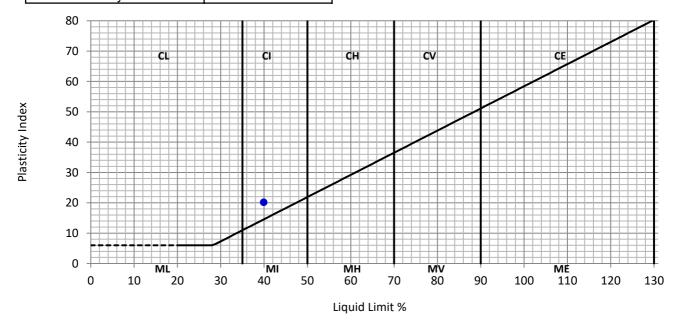
Client

Specification:

BS1377

Date Received:

19 October 2023


Date Tested:

21 October 2023

Test Results

Liquid Limit	40	%
Plastic Limit	20	%
Plasticity Index	20	%

Preparation:	4.2.4 Sieved Spe	ecimen	
Proportion retained	on 425µm sieve:	31	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ
Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

27/10/2023

ATT

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name: D23457

CAVAC BWF

Client:

HSP Consulting

Address Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

34835

NG16 3SB

Site Ref / Hole ID:

TP4

Depth (m):

0.70 - 1.00

Bulk

Sample No:

Sample Type:

Received:

Sampling Certificate

No

N/a

Material Description:

Brown slightly sandy gravelly

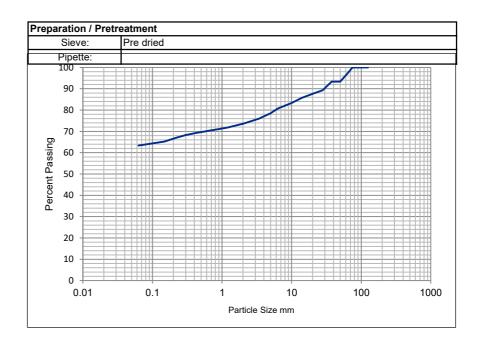
CLAY with low cobbe content

Location in Works:

Material Source:

Ex-Site

Unknown **Date Sampled:**


Material Supplier: Ex-Site

Sampled By: Client Specification: **BS1377**

Date Received: 19 October 2023 **Date Tested:** 26 October 2023

Test Results

Sieving					
Particle Size	% Passing				
mm	70 Fassing				
125	100				
90	100				
75	100				
63	97				
50	93				
37.5	93				
28	89				
20	88				
14	86				
10	83				
6.3	81				
5.0	79				
3.35	76				
2.00	74				
1.18	72				
0.600	70				
0.425	69				
0.300	68				
0.212	67				
0.150	65				
0.063	63				

Sample Porti	ons	Particle Density Mg/m3	Uniformity Coefficient		
Cobbles / Boulders	3	N/A	Childrinity Coefficient		
Gravel	23	IN/A	D ₆₀ / D ₁₀		
Sand	10	Dry mass of sample, kg			
Silt / Clay	63	8.1	n/a		

G Llewellyn

Remarks:

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle CF33 6BZ

7113	⊨ (
e, Bridgend,	U

Approver

Date

Fig

27/10/2023

PSD

Tel: 01656 746762 Fax: 01656 749096

7771

G Llewellyn, Senior Technician

Determination Of Water Content

ISO 17892-1: 2014+A1:2022

Project No: D23457

Project Name: CAVAC BWF

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 34836

NG16 3SB

Site Ref / Hole ID:

TP4

Depth (m):

1.50

1.70

Sample No:

Sample Type:

Bulk

1.70

Sampling Certificate

Received:

No

Material Description:

Light brown slightly gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

19 October 2023

Date Tested:

26 October 2023

Test Results

Moisture Content (%)

23.8

Remarks:

QA Ref.

EN ISO 17892-1:2014 A1:2022 **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

A Grogan

26/10/2023

мс

A Grogan, Laboratory Manager

LABORATORY **REPORT**

Contract Number: PSL23/8943

Report Date: 13 November 2023

Client's Reference:

Client Name: **HSP** Consulting

> Lawrence House 4 Meadowbank Way

Eastwood Nottingham **NG163SB**

For the attention of: Laura Jones

Barry Waterfront College (CAVAC BWF) Contract Title:

Date Received: 20/10/2023 Date Commenced: 20/10/2023 Date Completed: 13/11/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

L Knight R Berriman S Royle

(Assistant Laboratory Manager) (Associate Director) (Laboratory Manager)

A Watkins S Eyre T Watkins (Senior Technical Coordinator) (Managing Director) (Senior Technician)

Page 1 of

5 - 7 Hexthorpe Road, Hexthorpe, Doncaster, DN4 0AR

Tel: 01302 768098

Email: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

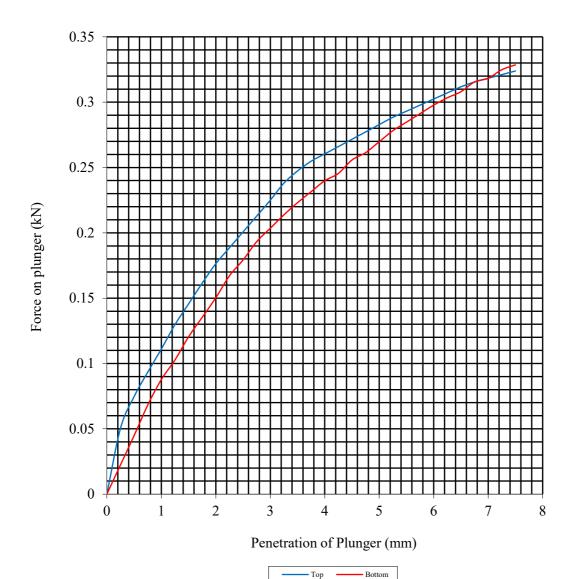
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP10		В	1.80		Brown slightly gravelly slightly sandy CLAY.
TP03		В	1.50		Brown slightly gravelly sandy CLAY.
TP04		В	1.50		Brown gravelly sandy CLAY.

Barry Waterfront College (CAVAC BWF)

03/01/2022

Contract No:	
PSL23/8943	
Client Ref:	

PSLRF011 Issue No.1 Approved by: L Pavey


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP10 Top Depth (m): 1.80

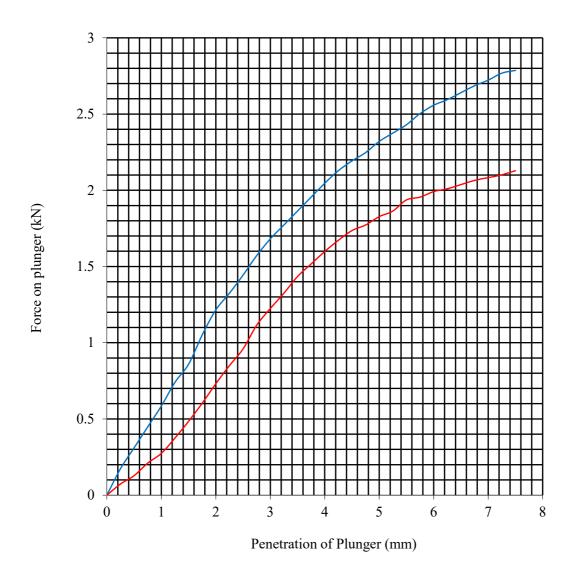
Sample Number: Base Depth (m):

Sample Type: B

Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	32	Surcharge Kg:	4.20	Sample Top	32	Sample Top	1.5
Bulk Density Mg/m3:	1.89	Soaking Time hrs	0	Sample Bottom	32	Sample Bottom	1.4
Dry Density Mg/m3: 1.44 Swelling mm:		0.00	Remarks : See Summary of	f Soil Desc	riptions.		
Percentage retained on 20mm BS test sieve:			5]			
Compaction Conditions 2.5kg]			

Barry Waterfront College (CAVAC BWF)

Contract No: PSL23/8943
Client Ref:


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP03 Top Depth (m): 1.50

Sample Number: Base Depth (m):

Sample Type: B

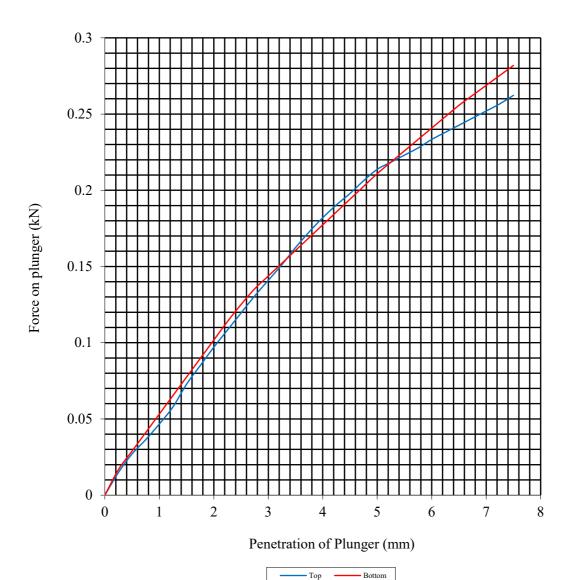
Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	19	Surcharge Kg:	4.20	Sample Top	19	Sample Top	11.6
Bulk Density Mg/m3:	2.11	Soaking Time hrs	0	Sample Bottom	19	Sample Bottom	9.1
Dry Density Mg/m3: 1.77 Swelling mm:		0.00	Remarks : See Summary o	f Soil Desci	riptions.		
Percentage retained on 20mm BS test sieve:			0				
Compaction Conditions 2.5kg							

- Top

Bottom

Barry Waterfront College (CAVAC BWF)

Contract No: PSL23/8943
Client Ref:


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP04 Top Depth (m): 1.50

Sample Number: Base Depth (m):

Sample Type: B

Initial Sample Conditions S		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	26	Surcharge Kg:	4.20	Sample Top	26	Sample Top	1.1
Bulk Density Mg/m3:	1.91	Soaking Time hrs	0	Sample Bottom	26	Sample Bottom	1.1
Dry Density Mg/m3: 1.52 Swelling mm:		0.00	Remarks : See Summary o	f Soil Desci	riptions.		
Percentage retained on 20mm BS test sieve:			14				
Compaction Conditions 2.5kg							

Barry Waterfront College (CAVAC BWF)

Contract No: PSL23/8943 **Client Ref:**

HSP Consulting Engineers Ltd Lawrence House 6 Meadowbank Way Eastwood Nottinghamshire NG16 3SB Kiwa CMT Unit 5 Prime Park Way Prime Enterprise Park Derby DE1 3QB

T +44 (0)1332 383333 E uk.cmt.enquiries@kiwa.com

www.kiwa.co.uk/cmt

Date: 30th November 2023

Lab Ref: 71210

Order Ref: C3297

Originator: Laura Jones

Site: Barry, C3297

Samples: A total of 14No borehole core samples, nominally 90mmØ, were delivered, by

the client, to Kiwa CMT on the 23rd November 2023. Each of the samples

were labelled, individually, with Sample ID and depth range.

Requirements: To assess the individual samples for UCS & Point Load at the locations, and

depths, delivered and requested by the client.

Results: Tabulated values are included overleaf, detailing test results and sample

location.

Kiwa CMT

lan Whitby Supervisor Building Products

Test Results

Ref	Depth (m)	Test Type	I _s (MPa)	I _{s(50)} (MPa)	UCS (N/mm²)
BH04	11.30-11.56	UCS	_	-	53.57
BH04	13.22-13.36	PL	0.154	0.200	-
BH04	24.23-24.42	UCS	-	-	47.09
BH02	23.74-24.00	UCS	-	-	34.00
BH02	24.31-24.51	PL	1.190	1.514	-
BH03	19.10-19.26	PL	0.338	0.457	-
BH03	21.98-22.25	UCS	-	-	33.51
BH06	33.00-33.37	UCS	-	-	30.04
BH06	28.04-28.31	UCS	-	-	20.41
BH06	27.21-27.38	PL	0.349	0.461	-
BH01	33.14-33.37	UCS	-	-	33.39
BH01	23.73-24.00	UCS	-	-	33.41
BH01	19.39-19.50	PL	1.634	2.269	-
BH01	20.65-20.87	UCS	_	-	33.35

Comments:

 $I_{s(50)}$ is the corrected Point Load strength when converted to a value of I_s that would have been measured by a diametral test with a \emptyset of 50mm. All Point Load tests undertaken Axially [PL(A)].

Samples tested on 30^{TH} November 2023.

N/mm² is equivalent to MPa.

Kiwa CMT

Unit 5 Prime Park Way

Prime Enterprise Park

T +44 (0)1332 383333

www.kiwa.co.uk/cmt

E uk.cmt.enquiries@kiwa.com

Kiwa CMT

Derby

DE1 3QB

Client: HSP Consulting Limited

Lawrence House 6 Meadowbank Way

Eastwood Nottinghamshire NG16 3SB

Date: 26th January 2024

Lab Ref: 71183

Originator: Laura Jones

Order Ref: SC14907

Site: Barry Waterfront College

Samples:

42No. samples weighing approximately 1-5kg each were sampled by the client and delivered to Kiwa CMT on 22nd November 2023. Sampling certificates were not provided.

Requirements:

Determine the following:

- Moisture Content of 33No. samples in accordance with BS 1377-2:1990
- Plasticity Index of 18No. samples in accordance with **BS 1377-2:1990**
- Particle size Distribution of 23 samples including 17No. Pipette Sedimentations in accordance with BS EN ISO 17892-4:2016
- California Bearing Ratio for 1 No. sample in accordance with BS1377-4:1990
- 1No. Organic Matter Content.
- 5No. 60mm shear boxes in accordance with BS EN ISO 17892-10:2018

Note: All testing subcontracted

Results:

The individual results sheets may be viewed on pages 2 to 80 of this report and test results relate only to the items tested.

Kiwa CMT

Author L Anaz Technical Administator

Checked and approved by: R. Cartlidge Department Head

Kiwa CMT Ltd
Unit 5
Prime Parkway
Prime Enterprise Business Park
Derby
DE1 3QB
For the attention of Daniel Newton

Page 1 of 1

Report No: C8650

LABORATORY TEST REPORT

Project Na Project Nu		BARRY WATERFRONT COLLEGE C8650	Date samples received	28/11/2023
Your Ref	ill DC1	SC14907	Date written instructions received	27/11/2023
Purchase (Order	71183	Date testing commenced	05/12/2023
		Please find enclosed the	results as summarised below	19-
Item No	Test Quantity		Description	ISO 1702
2.11	33	Moisture Content		Yes
2.21	18	Four point liquid and plastic limits	1	Yes
2.61	23	Wet sieve analysis		Yes
2.63	17	Pipette sedimentation		Yes
4.41	1	Remoulded CBR		Yes

Issued by: R Collett

Key to symbols used in this report S/C: Testing was sub-contracted

Approved Signatories

J.Hopkins (Laboratory Coordinator), M.D. Brown (Senior Quality Manager), R.Norris (Supervisor), R.Collett (Site Supervisor), M.Bryan (Senior Lab Technician)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory.

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

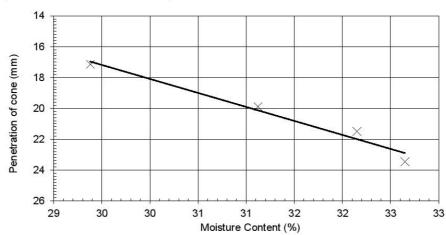
College Road North, Aston Clinton, Bucks, HP22 5EZ Tel: 01494 810136 astonclinton@igne.com www.igne.com

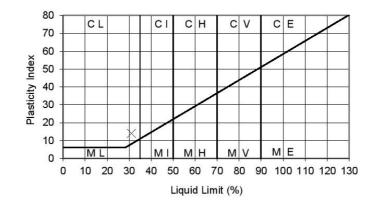
Terra Tek Lid is registered in Scotland No. 121594 Offices in Airdrie, Birmingham, Bulfast and Aston Clinton

Version 020 - 07/12/2012 Contract No SC14907 BARRY WATERFRONT COLLEGE TERRA TEK Client Kiwa CMT Ltd Content Table Engineer Sample Identification Moisture 1212-Moisture Exploratory Depth Lab Sample Non Enginering Description Content Hole ID % Brown slightly sandy slightly gravelly CLAY. Gravel is fine to BH02 1.20-1.45 391920 8.4 BH02 2.00-2.45 391921 Very dark grey silty very sandy fine to coarse GRAVEL. 13 Brown slightly sandy slightly gravelly CLAY. Gravel is fine to **BH02** 3.00-3.45 391922 38 coarse with occasional rootlets. Brown mottled grey slightly gravelly slightly sandy CLAY. BH02 4.00-4.45 391923 39 Gravel is fine. Reddish brown slightly sandy slightly gravelly CLAY. Gravel is BH02 5.00-5.45 391924 35 fine to coarse. BH02 6.00-6.45 391925 Brown slightly sandy CLAY with rare fine gravel. 37 Grey slightly gravelly slightly sandy CLAY. Gravel is fine to BH02 10.00-10.45 391928 42 Grey slightly sandy slightly gravelly CLAY. Gravel is fine to **BH02** 11.00-11.45 391929 37 coarse BH02 13.00-13.45 391930 49 Grev slightly gravelly CLAY. Gravel is fine. Light grey slightly gravelly sandy CLAY. Gravel is fine to BH02 14.00-14.45 391931 69 Grey slightly sandy slightly gravelly CLAY. Gravel is fine to BH02 15.00-15.45 391932 60 coarse. College Road North, Aston Clinton, Bucks, HP22 5EZ MADE GROUND (Very dark grey clayey very sandy fine to BH03 1.20-1.65 391910 17 coarse gravel). Project No C8650: 19/12/2023 13:57:35 Very dark brown slightly sandy gravelly CLAY. Gravel is fine to BH03 2.00-2.45 391911 19 coarse with occasional rootlets. BH03 3.00-3.45 391912 Brown slightly gravelly slightly sandy CLAY. 31 Notes Checked & Originator Approved MOISTURE CONTENT BS1377:Part 2:1990 Clause 3.2 RC HW Lab 19/12/2023 Sheet 1 of 3

Version 020 - 07/12/2012 Contract No SC14907 BARRY WATERFRONT COLLEGE TERRA TEK Client Kiwa CMT Ltd Content Table Engineer Sample Identification Moisture 1212-Moisture Exploratory Depth Lab Sample Content Non Enginering Description Hole ID m % **BH03** 4.00-4.45 391913 Brown slightly sandy slightly gravelly CLAY. Gravel is fine. 42 Grey brown slightly sandy slightly gravelly CLAY. Gravel is fine BH03 6.00-6.45 391914 to coarse with occasional rootlets. 7.00-7.45 **BH03** 391915 Brown slightly sandy CLAY. Rare fine gravel 38 BH03 8.00-8.45 391916 Brown CLAY. 37 Dark brown slightly sandy slightly gravelly CLAY. Gravel is fine **BH04** 2.00-2.45 391935 24 Dark grey slightly sandy slightly gravelly CLAY. Gravel is fine to BH04 3.00-3.45 391936 38 coarse. Brown slightly sandy slightly gravelly CLAY. Gravel is fine to 4.00-4.45 391937 **BH04** 40 coarse with occasional rootlets. Dark grey slightly gravelly slightly sandy CLAY. Gravel is fine to **BH04** 5.00-5.45 391938 44 coarse BH04 6.00-6.45 391939 Brown CLAY. 50 MADE GROUND (Very dark grey slightly silty very sandy fine to **BH06** 1.20-1.45 391897 15 coarse gravel with much cobbles). MADE GROUND (Dark brown silty very sandy fine to coarse **BH06** 2.00-2.45 391898 14 gravel with some construction debris). College Road North, Aston Clinton, Bucks, HP22 5EZ Light brown slightly sandy slightly gravelly CLAY. Gravel is fine BH06 3.00-3.45 391899 38 to coarse. Project No C8650: 19/12/2023 13:58:13 Grey slightly gravelly slightly sandy CLAY. Gravel is fine to BH06 391900 4.00-4.45 34 medium. Grey/brown slightly sandy slightly gravelly CLAY. Gravel is fine BH06 5.00-5.45 391901 38 to coarse. Notes Checked & Originator Approved MOISTURE CONTENT BS1377:Part 2:1990 Clause 3.2 RC HW Lab 19/12/2023 Sheet 2 of 3

Version 020 - 07/12/2012 Contract No SC14907 BARRY WATERFRONT COLLEGE TERRA TEK 1212 - Moisture Content Table Client Kiwa CMT Ltd Engineer Sample Identification Moisture Exploratory Depth Lab Sample Non Enginering Description Content Hole ID % Grey brown slightly gravelly slightly sandy CLAY. Gravel is fine BH06 6.00-6.45 391902 36 Brown slightly sandy slightly gravelly CLAY. Gravel is fine to BH06 9.00-9.45 391903 Dark grey slightly gravelly slightly sandy CLAY. Gravel is fine to BH06 10.00-10.45 391904 34 Grey slightly gravelly slightly sandy CLAY. Gravel is fine to BH06 16.00-16.45 391907 41 medium. Grey slightly sandy slightly gravelly CLAY. Gravel is fine to 19.00-19.45 391908 **BH06** 43 BH06 20.00-20.45 391909 Light brown sandy very clayey fine to coarse GRAVEL. 15 College Road North, Aston Clinton, Bucks, HP22 5EZ Lab Project No C8650: 19/12/2023 13:58:30 Notes Checked & Originator Approved MOISTURE CONTENT BS1377:Part 2:1990 Clause 3.2 RC HW 19/12/2023 Sheet 3 of 3


Version 046 - 06/03/2020 1220 - LLPL BH02 01.20 - C8650-391920.xls: Sample ID 391920


1920		Cito	BARRY WATERFRONT COLLEGE	Contract No	SC14907
33	TERRA TEK	Site		Hole ID	BH02
Sample I		Client	Kiwa CMT Ltd	Depth (m)	1.20-1.45
Sar		Engineer		1 4531 6460-U RK	

Non Engineering Description: Brown slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse.

Preparation: Sample washed and air dried

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 8.4 % % Percentage retained on 425µm sieve : 67 31 % Liquid Limit: Plastic Limit: 17 % Plasticity Index: 14

Equivalent moisture content of material passing 425µm sieve : 26 % 0.64 Liquidity Index:

Originator	Checked & Approved
HW	19/12/2023

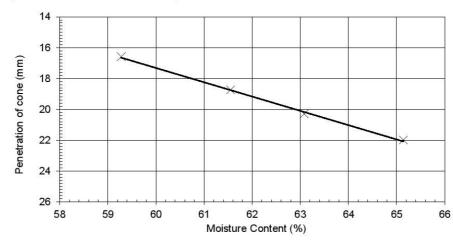
Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

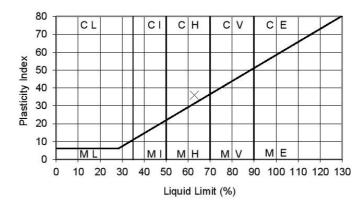
Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ

Version 046 - 06/03/2020 1220 - LLPL BH02 03.00 - C8650-391922.xis : Sample ID 391922

ERRATEK
Site BARRY WATERFRONT COLLEGE
Hole ID BH02
Client Kiwa CMT Ltd
Engineer


Contract No. SC14907


Depth (m) 3.00-3.45

Non Engineering Description : Brown slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse with occasional rootlets.

Preparation: Sample washed and air dried

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990)

Percentage retained on 425µm sieve:
Liquid Limit:

Plastic Limit:

Plasticity Index:

38 %

Procentage retained on 425µm sieve:

29 %

30 %

Plasticity Index:

Equivalent moisture content of material passing 425 μm sieve : $$39\,\%$$ Liquidity Index : $$0.33\,$

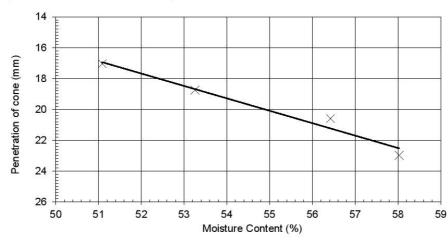
Originator	Checked & Approved
HW	R.J.N. 19/12/2023

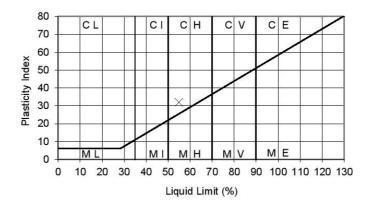
Liquid Limit (Four Point Cone Penetrometer Method)
Plastic Limit, Plasticity Index & Liquidity Index
BS 1377:Part 2:Clause 4.3:1990
BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ

Version 046 - 06/03/2020 1220 - LLPL BH02 05.00 - C8650-391924.xls: Sample ID 391924 TERRATEK
Site BARRY WATER FRONT COLLEGE
Hole ID BH02
Client Kiwa CMT Ltd
Engineer


Contract No. SC14907


Depth (m) 5.00-5.45

Non Engineering Description: Reddish brown slightly sandy slightly gravelly CLAY. Gravel is

fine to coarse.

Preparation: Sample washed and air dried

Results :

 As Received Moisture Content: (BS1377:Part 2:Clause 3:1990)
 35 %

 Percentage retained on 425μm sieve:
 6 %

 Liquid Limit:
 55 %

 Plastic Limit:
 23 %

 Plasticity Index:
 32

Equivalent moisture content of material passing 425µm sieve : 37 $\,\%$ Liquidity Index : 0.44

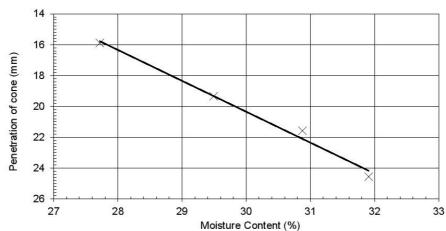
Originator	Checked & Approved
HW	R.J.N. 19/12/2023

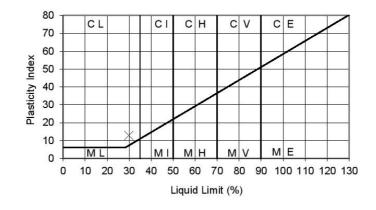
Liquid Limit (Four Point Cone Penetrometer Method)
Plastic Limit, Plasticity Index & Liquidity Index
BS 1377 Part 2 Clause 4 3 1990

BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ


Version 046 - 06/03/2020 1220 - LLPL BH02 11.00 - C8650-391929.xls : Sample ID 391929


SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH02 Client Kiwa CMT Ltd Depth (m) 11.00-11.45 Engineer

Non Engineering Description: Grey slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse.

Preparation: Sample washed and air dried

Results:

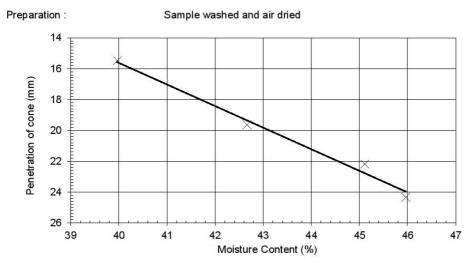
As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 37 % 12 % 30 % Percentage retained on 425µm sieve : Liquid Limit: Plastic Limit: 17 % Plasticity Index: 13

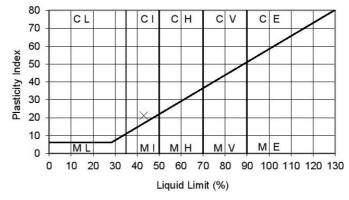
Equivalent moisture content of material passing 425µm sieve : 42 % Liquidity Index: 1.92

Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


College Road North, Aston Clinton, Bucks, HP22 5EZ



Version 046 - 06/03/2020 1220 - LLPL BH02 13.00 - C8650-391930 xls : Sample ID 391930

	Site		Contract No	. SC14907
A TEK	Site		Hole ID	BH02
SATION AND LABORATORY SERVICES	Client	Kiwa CMT Ltd	Depth (m)	13.00-13.45
	Engineer			

Non Engineering Description: Grey slightly gravelly CLAY. Gravel is fine.

Results:

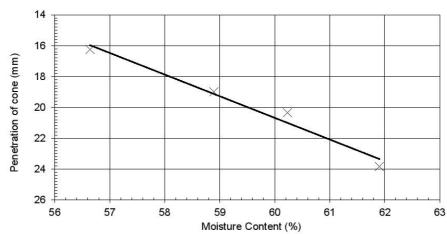
As Received Moisture Content: (BS1377:Part 2:Clause 3:1990)	49	%
Percentage retained on 425µm sieve :	3	%
Liquid Limit :	43	%
Plastic Limit :	22	%
Plasticity Index :	21	
Equivalent mainture content of material massing 425 um sieve :	E1	0/

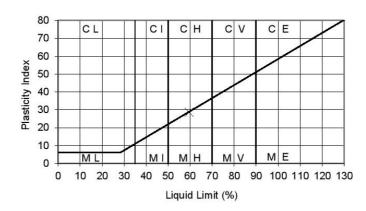
-1	
Liquidity Index :	1.38

Originator	Checked & Approved
HW	19/12/2023 R.J.N.

Liquid Limit (Four Point Cone Penetrometer Method)
Plastic Limit, Plasticity Index & Liquidity Index
BS 1377:Part 2:Clause 4.3:1990
BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


Version 046 - 06/03/2020 1220 - LLPL BH02 15.00 - C8650-391932.xls : Sample ID 391932


SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH02 Client Kiwa CMT Ltd Depth (m) 15.00-15.45 Engineer

Non Engineering Description: Grey slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse.

Preparation: Sample washed and air dried

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 60 % 15 % 60 % Percentage retained on 425µm sieve : Liquid Limit: Plastic Limit: 31 % 29 Plasticity Index:

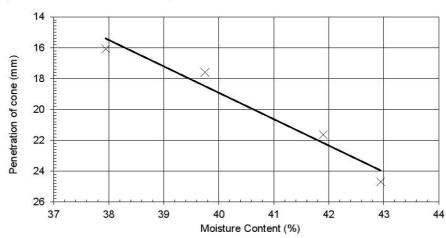
Equivalent moisture content of material passing 425µm sieve : 70 % Liquidity Index: 1.34

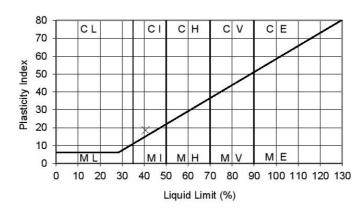
Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ Lab Project No C8650: 19/12/2023 14:26:13


Version 046 - 06/03/2020 1220 - LLPL BH03 02.00 - C8650-391911.xls : Sample ID 391911


SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH03 Client Kiwa CMT Ltd Depth (m) 2.00-2.45 Engineer

Very dark brown slightly sandy gravelly CLAY. Gravel is fine to Non Engineering Description:

coarse with occasional rootlets.

Preparation: Sample washed and air dried

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 19 % 53 % 41 % Percentage retained on 425µm sieve : Liquid Limit: Plastic Limit: 22 % 19 Plasticity Index:

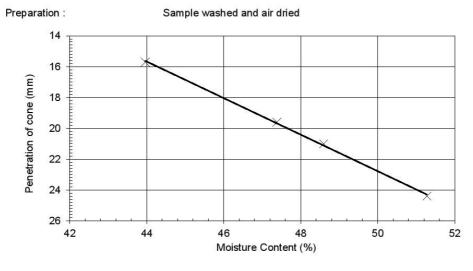
Equivalent moisture content of material passing 425µm sieve : 40 % 0.95 Liquidity Index:

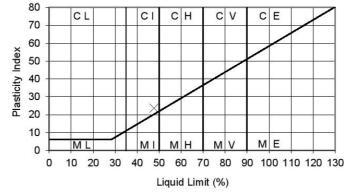
Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990

BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


College Road North, Aston Clinton, Bucks, HP22 5EZ



Version 046 - 06/03/2020 1220 - LLPL BH03 04.00 - C8650-391913.xls : Sample ID 391913

			Contract No	. SC14907
TERRA TEK	Site	BARRY WATERFRONT COLLEGE	Hole ID	BH03
SITE INVESTIGATION AND LABORATORY SERVICES	Client	Kiwa CMT Ltd	Depth (m)	4.00-4.45
	Engineer			

Non Engineering Description: Brown slightly sandy slightly gravelly CLAY. Gravel is fine.

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 42 % 6 % 48 % Percentage retained on 425µm sieve : Liquid Limit: 24 % 24 Plastic Limit: Plasticity Index:

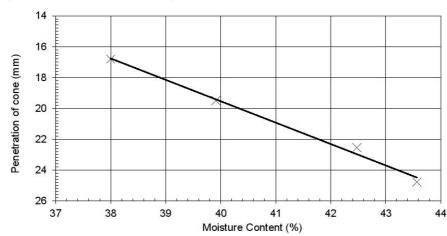
Equivalent moisture content of material passing 425µm sieve : 45 % 0.88 Liquidity Index:

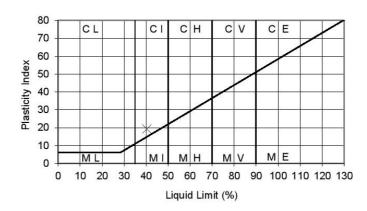
oved
2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ


Version 046 - 06/03/2020 1220 - LLPL BH03 06.00 - C8650-391914.xls : Sample ID 391914


SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH03 Client Kiwa CMT Ltd Depth (m) 6.00-6.45 Engineer

Non Engineering Description: Grey brown slightly sandy slightly gravelly CLAY. Gravel is fine

to coarse with occasional rootlets.

Preparation: Sample washed and air dried

Results:

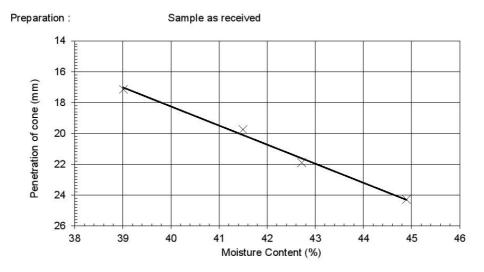
As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 5 % 40 % Percentage retained on 425µm sieve : Liquid Limit: 21 % 19 Plastic Limit: Plasticity Index:

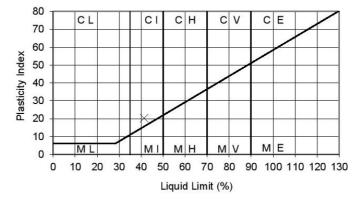
Equivalent moisture content of material passing 425µm sieve : 46 % Liquidity Index: 1.32

Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


College Road North, Aston Clinton, Bucks, HP22 5EZ



Version 046 - 06/03/2020 1220 - LLPL BH03 08.00 - C8650-391916.xls : Sample ID 391916

SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH03 Client Kiwa CMT Ltd Depth (m) 8.00-8.45 Engineer

Non Engineering Description: Brown CLAY.

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 37 % 0 % 41 % Percentage retained on 425µm sieve : Liquid Limit: Plastic Limit: 21 % 20 Plasticity Index:

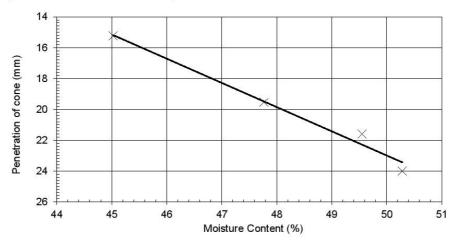
Equivalent moisture content of material passing 425µm sieve : 37 % 0.80 Liquidity Index:

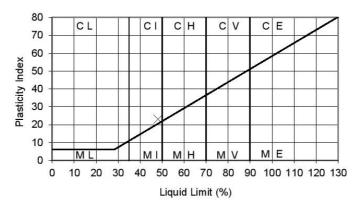
Originator	Checked & Approved
HW	19/12/2023
	R.J.N.

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ


Version 046 - 06/03/2020 1220 - LLPL BH04 02.00 - C8650-391935.xls: Sample ID 391935


Site	Site	BARRY WATER FRONT COLLEGE	Contract No	. SC14907
TERRA TEK			Hole ID	BH04
SITE INVESTIGATION AND LABORATORY SERVICES	Client	Kiwa CMT Ltd	Depth (m)	2.00-2.45
	Engineer		431 6000 44	

Non Engineering Description: Dark brown slightly sandy slightly gravelly CLAY. Gravel is fine

to coarse.

Preparation: Sample washed and air dried

Results :

 As Received Moisture Content: (BS1377:Part 2:Clause 3:1990)
 24 %

 Percentage retained on 425μm sieve:
 48 %

 Liquid Limit:
 48 %

 Plastic Limit:
 25 %

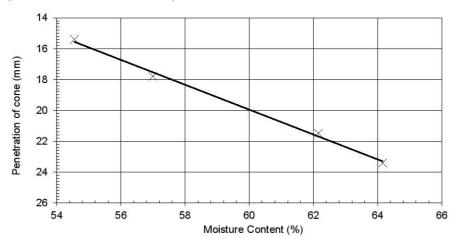
 Plasticity Index:
 23

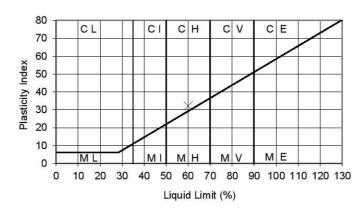
Equivalent moisture content of material passing 425µm sieve : 46 $\,\%$ Liquidity Index : 0.91

Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method)
Plastic Limit, Plasticity Index & Liquidity Index
BS 1377:Part 2:Clause 4.3:1990
BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


Version 046 - 06/03/2020 1220 - LLPL BH04 04.00 - C8650-391937.xls: Sample ID 391937 RATEK
Site BARRY WATERFRONT COLLEGE
Hole ID BH04
Client Kiwa CMT Ltd
Engineer


Contract No. SC14907
Hole ID BH04
Depth (m) 4.00-4.45

Non Engineering Description : Brown slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse with occasional rootlets.

Preparation: Sample washed and air dried

Results:

 As Received Moisture Content: (BS1377:Part 2:Clause 3:1990)
 40 %

 Percentage retained on 425μm sieve:
 7 %

 Liquid Limit:
 60 %

 Plastic Limit:
 28 %

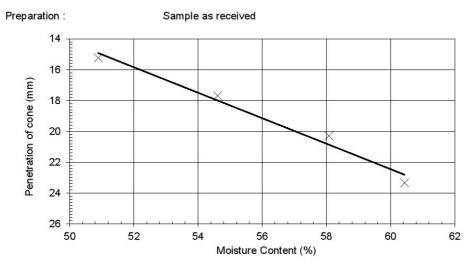
 Plasticity Index:
 32

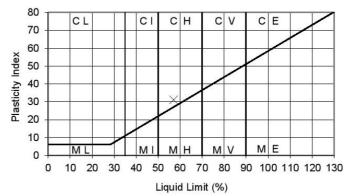
Equivalent moisture content of material passing 425 μ m sieve : 43 % Liquidity Index : 0.47

Originator	Checked & Approved
HW	R.J.N. 19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method)
Plastic Limit, Plasticity Index & Liquidity Index
BS 1377:Part 2:Clause 4.3:1990
BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1


College Road North, Aston Clinton, Bucks, HP22 5EZ



Version 046 - 06/03/2020 1220 - LLPL BH04 06.00 - C8650-391939.xls : Sample ID 391939

SC14907 Contract No. BARRY WATERFRONT COLLEGE Hole ID BH04 Client Kiwa CMT Ltd Depth (m) 6.00-6.45 Engineer

Non Engineering Description: Brown CLAY.

Results:

As Received Moisture Content: (BS1377:Part 2:Clause 3:1990) 50 % 0 % 57 % Percentage retained on 425µm sieve : Liquid Limit: 26 % 31 Plastic Limit: Plasticity Index:

Equivalent moisture content of material passing 425µm sieve : 50 % Liquidity Index: 0.77

Originator	Checked & Approved
HW	19/12/2023

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index BS 1377:Part 2:Clause 4.3:1990 BS 1377:Part 2:Clause 5:1990

Sheet 1 of 1

College Road North, Aston Clinton, Bucks, HP22 5EZ