

Hillside Phase 2 Contamination Assessment

Ref: 101142 Version 1.0

Site Hillside,

Leckwith Road,

Cardiff, CF11 8DR

Client William Richards

Date 17/11/2023

Project Reference 101142

Drafted by:

Abbie Davies BSc AMIEnvSc Geo-Environmental Consultant

Date

14th November

Prepared by:

Michael D'Elia BSc FGS Geo-Environmental Consultant

Date 15th November

Authorised by:

Jake Bayne MSc MIEnvSc CEnv Director

Date

17th November

	Executive Summary
	The site is a parcel of land set on the side of a hill. It is accessible via a steep access track down from the main road (B4267) via a locked gate.
Site Description	The parcel of land at the base of the track is atop a hill, with a steep bank down to flats, approximately 50m from the River Ely along the north-eastern boundary of the site. There is a residential property, no longer lived in, in the southern corner of the site. The slop downwards was uneven, with occasional ditches present.
	The site is predominantly covered in grasses, with some larger trees around the border. There is a section of land in the north-west of the site used for burning, which contained remnants of burned materials.
Brief / Proposed Development	Dice Environmental has been told by the client that soils have been imported to infill the void left by a landslide to the front of the existing property, in an attempt to stabilise the bank, and prevent damage to the property itself. Further to the infilled land, a channel was dug to divert spring water around the boundary of the plot, which was thought to have contributed to the initial landslide. It is proposed that the consequential imported soils remain on site, to be used as residential garden land associated with the existing (but currently disused) residential property.
Geology	Geological maps of the area show most of the site to be underlain by superficial strata of calcareous Tufa. Geological maps of the area show the site to be predominantly situated upon bedrock of the Blue Anchor Formation, comprising Mudstone. However, the west of the site is underlain by bedrock of the Penarth Group, comprising Mudstone and Limestone, and the east of the site is underlain by the Mercia Mudstone group, comprising Mudstone. Made ground was identified across the site, to a maximum depth of 5.0mbgl. Natural superficial strata was not identified during the site investigation.
Ground Gas	The worst-case GSV has been identified as CS2 / Amber. Furthermore, Methane levels have been recorded as >1%, and Carbon Dioxide levels above >5%, which is considered the trigger threshold to be considered CS2/ Amber. Whilst no further new structures are proposed for the site, the introduction of gas generating soils adjacent to the existing property may pose a risk to end users of the site, should the existing residential

	property come back into use. It is recommended that internal gas levels in the property be monitored to identify if ground gas migration to potential receptors is complete, and if retrofitting the existing property with ground gas protection measures will be required.				
Risk to Controlled Waters	No significant levels of contaminants of concern have been identified with respect to controlled waters at this time. Further assessment may be required at a later date.				
Human Health Risk Assessment & Remedial Measures	Exceedances in Lead, Napthalene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(ah)anthracene were identified during this site investigation. Therefore, In areas of soft landscaping, it will be necessary to install a clean cover system of a minimum depth of 500mm. The cover system should comprise imported, verified subsoil 8 topsoil in areas of proposed soft landscaping. Imported soils should comply chemically with criteria highlighted within Appendix E (Residential with Produce end use). Following installation, a verification study shall be required to assess the depth and chemical composition of the installed capping layer and submit the findings as a verification report to the local authority for approval. Due to the uneven nature of the land, steep slope and observed ditches along the side of the bank, it is recommended the topography and stability of the site be considered, to mitigate risk of future movement of the capping system.				
Recommendations	A phase 2 intrusive investigation was carried out which successfully characterised made ground across the site, within shallow soils. Representative soil samples were taken of these made ground materials and sent for analysis at a UKAS/MCERTS accredited laboratory for analysis of the identified contaminants of concern. It is considered that the site may be suitable for the proposed use as residential garden area, providing the following recommendations & remedial measures are implemented. Recommendations: - In areas of soft landscaping, it will be necessary to install a clean cover system of a minimum depth of 500mm. The cover system should comprise imported, verified subsoil & topsoil in areas of proposed soft landscaping. Imported soils should comply chemically with criteria highlighted within Appendix E (Residential with Produce end use).				

- Following installation, a verification study shall be required to assess the depth and chemical composition of the installed capping layer and submit the findings as a verification report to the local authority for approval.
- Due to the uneven nature of the land, steep slope and observed ditches along the side of the bank, it is recommended the topography and stability of the site be considered, to mitigate risk of future movement of the capping system.
- The area of observed burned material in the north west of the site should be scraped and removed from site.

This report should be submitted to your local planning authority for approval.

Contents

Executive Summary	2
1. Introduction	6
1.1. Client Brief	6
1.2. Report Objectives	6
1.3. References	6
1.4. Limitations	7
2. Site Information	9
2.1. Site Location	9
2.2. Site Description	9
2.3. General Area Context	9
3. Phase II Investigation	10
3.1. Overview of Works	10
4. Ground Conditions	11
4.1. Made Ground	11
4.2. Superficial Strata	11
4.3. Solid Strata	11
4.4. Groundwater	11
4.5. Field Observations	11
5. Contamination Assessment	12
5.1. Inorganics & Organics	12
5.2. Asbestos	13
5.3. Ground Gas	14
5.4. Controlled Waters	14
6. Phase II Conceptual Site Model	15
7. Risk Management & Remediation	17
7.1. Remediation to Protect End Users	17
7.2. Ground Gas Protection Measures	17
7.3. Remediation to Protect Controlled Waters	18
7.4. Remediation to Protect Construction Workers	18
8. Conclusions and Recommendations	19

Appendix A – Figures
Appendix B – Soil Logs
Appendix C – Ground Gas Results
Appendix D – Laboratory Results
Appendix E - GACs

1. Introduction

1.1. Client Brief

Dice Environmental was instructed by William Richards to undertake a Phase 2 Contamination Assessment for the site known as 'Hillside, Leckwith Road, Cardiff, CF11 8DR' to determine the chemical suitability of the land for the proposed end use.

Dice Environmental has been told by the client that soils have been imported to infill the void left by a landslide to the front of the existing property, in an attempt to stabilise the bank, and prevent damage to the property itself. Further to the infilled land, a channel was dug to divert spring water around the boundary of the plot, which was thought to have contributed to the initial landslide. It is proposed that the consequential imported soils remain on site, to be used as residential garden land associated with the existing (but currently disused) residential property.

The site location plan and layout are included within Appendix A.

1.2. Report Objectives

This Phase 2 Geo-Environmental Assessment includes:

- The provision and execution of a Phase II Contamination Assessment strategy, to investigate the chemical suitability of shallow soils to remain to remain in-situ for residential (private garden) use.
- The development of a Phase II Conceptual Model.
- Conclusions and recommendations to facilitate responsible use of the site, in relation to the intended end use.

1.3. References

Assessment guidance and site-specific information has been sought from the following locations:

- EA/DEFRA (2020) LCRM: Land contamination Risk Management (Supersedes (2004), CLR11: Model Procedures for the Assessment of Land Contamination).
- BS 5930:2015+A1:2020: Code of practice for ground investigations.
- Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4UIs for Human Health Risk Assessment. Land Quality Press, Nottingham.

- DEFRA (2014). Category 4 Screening Levels (C4SL) SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- CIRIA. (2001). Contaminated land risk assessment A guide to good practice.
- DoE (1995), Industry profiles.
- Environment Agency. (2008). *R&D Publication 66. Guidance for the Safe Development of Housing on Land Affected by Contamination.*
- Environment Agency. (March 2017). New Groundwater Vulnerability Mapping Methodology in England and Wales. Reference SC040016/R. Environment Agency.
- BS 8485:2015+A1:2019 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- BRE (2004), BR465: Cover systems for land regeneration.
- CIRIA (2014), C733 Asbestos in soil and made ground: a guide to understanding and managing risks.
- Scivyer, C. (2015). BRE 211. Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects). Fifth Edition.
- The Coal Authority. (2018). Coal Authority Interactive Viewer. Retrieved from http://mapapps2.bgs.ac.uk/coalauthority/home.html

1.4. Limitations

The recommendations and opinions expressed in this report are based on information obtained as part of the desk study or provided by others. Information provided from other sources is taken in good faith and Dice Environmental cannot guarantee its accuracy. By the very nature of a ground investigation, information gained through intrusive investigation is from specific point locations. Ground conditions have the potential to vary significant across any site, and the ultimate decision with regards to foundation design or other technical specifications lies with the developer and/or structural engineer. Reliance upon the contents of this report is subject to receipt of payment for any outstanding balance owed to Dice Consulting Engineers Ltd. or Dice Environmental Ltd. dated prior to, and in associated with this report.

This report does not include specific investigation for the presence of either Potential Asbestos Containing Material (PACM) (unless identified within soils) or Japanese Knotweed at the subject site however, if obvious evidence of either is observed during the site walkover, details will be provided in this report. Specialist contractors should be commissioned to make detailed assessments and recommendations if these materials are suspected.

This report provides an assessment of the chemical suitability of soils to remain in-situ with respect to the proposed end use, and makes no comment or interpretation on which can be relied with respect to geo-technical considerations, such as, but not limited to, slope stability or topography.

The information contained in this report is intended for the use of William Richards and Dice Environmental can take no responsibility for the use of this information by any third party or for uses other than that described in this report or detailed within the terms of our engagement.

2. Site Information

2.1. Site Location

The site is located approximately 3.26km south-west of Cardiff City centre. The national grid reference (NGR) for the approximate centre of the site is ST 160 748.

A site plan is presented within Appendix A.

2.2. Site Description

A site walkover was undertaken by Dice Environmental on the 26th October 2023.

The site is a parcel of land set on the side of a hill. It is accessible via a steep access track down from the main road (B4267) via a locked gate.

The parcel of land at the base of the track is atop a hill, with a steep bank down to flats, approximately 50m from the River Ely along the north-eastern boundary of the site. There is a residential property, no longer lived in, in the southern corner of the site. The slop downwards was uneven, with occasional ditches present.

The site is predominantly covered in grasses, with some larger trees around the border. There is a section of land in the north-west of the site used for burning, which contained remnants of burned materials.

2.3. General Area Context

North: To the immediate north of the site there is a wooded area, with an industrial estate including a concrete supplier approximately 150m north.

East: To the east of the site there are flats leading to the River Ely approximately 50m away, with the a4232 and industrial estate (comprising a recycling centre, a delivery office & car dealerships) beyond.

South: To the south of the site there is predominantly wooded land.

West: To the west of the site there is predominantly forested land and open fields, with occasional unspecified buildings.

3. Phase II Investigation

3.1. Overview of Works

The Phase II intrusive investigation was undertaken on the 26th October 2023 under the supervision of a suitably qualified engineer and in general accordance with the Code of Practice for Site Investigations BS 5930:2015+A1:2020.

The Phase II investigation incorporated the following:

- The advancement of 11No. hand dug pits to a maximum depth of 0.4mbgl.
- The advancement of 5No. Window Sample boreholes to a maximum depth of 5mbgl.

In all exploratory locations, holes were advanced through any made ground onto underlying natural soils, soils were logged and any visual or olfactory evidence of contamination noted.

- The analysis of 4No. soil samples at a UKAS/MCERTS accredited laboratory for general and site specific chemical determinands. This included:
 - 21No. soil samples being analysed for a standard 'CLEA' screening suite of heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, V, Zn), PAHs (USEPA 16 & Total) and asbestos.
 - 8No. soil samples being analysed for hydrocarbons (TPH CWG ali/aro split).
 - 2No. samples undergoing Waste Acceptance Criteria testing to classify the waste of inert, hazardous or non-hazardous.

Sample locations are contained within Appendix A. Soil logs are contained in Appendix B.

4. Ground Conditions

4.1. Made Ground

Made ground was identified across the site. It predominantly consisted of sandy gravelly clay containing brick, concrete, rare glass, ceramic, wood chippings and plastic fragments.

Dark brown clayey gravelly sandy topsoil with fragments of plastic, rare glass, wood chippings and brick was identified to a maximum depth of 0.1mbgl across the slope of the bank. This was underlain by the sandy gravelly clay made ground, where gravels were as described above, identified across the remainder of the site.

Made ground was identified to a maximum depth of 5.0mbgl. The total depth of the made ground was not identified.

4.2. Superficial Strata

Natural superficial geology was not identified during this site investigation.

4.3. Solid Strata

Solid geology was not encountered during this site investigation.

4.4. Groundwater

Groundwater was not encountered during the excavation of the window sample boreholes and hand pits. However, during groundwater monitoring identified groundwater at 1.95mbgl. This is potentially perched runoff unable to drain into clayey soils.

4.5. Field Observations

Ditches were noted in the side of the bank. Care should be taken when navigating this terrain.

Beyond the presence of made ground no significant visual or olfactory evidence of contamination was noted within soils across the site.

5. Contamination Assessment

The guidance detailed in section 1.3 has been followed to ensure that the risk posed to identified receptors, is reported according to accepted compliance criteria.

A Tier 1 stage, the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM/CIEH S4UL ("Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3829. All rights reserved") and DEFRAs C4SLs within Appendix E.

5.1. Inorganics & Organics

Determinand	Greatest recorded value across all samples (mg/kg)	Residential with Produce end use (mg/kg)	Pass/Fail	Public Open Space end use (mg/kg)	Pass/Fail	
Arsenic (total)	31.4	37	Pass	79	Pass	
Cadmium (total)	<2	11	Pass	120	Pass	
Chromium (total)	91.7	910	Pass	1500	Pass	
Chromium (VI)	<0.05	6	Pass	7.7	Pass	
Copper (total)	68.9	2400	Pass	12000	Pass	
Lead (total)	209.2	200	Fail wso1 @ 0.1	630	Pass	
Mercury (total)	<2	1.2	Pass	16	Pass	
Nickel (total)	39.3	180	Pass	230	Pass	
Selenium (total)	<3	250	Pass	1100	Pass	
Vanadium (total)	200.9	410	Pass	2000	Pass	
Zinc (total)	nc (total) 316.4		Pass	81000	Pass	
		PAHs				
Naphthalene	37.60	13	Fail HP10 @ 0-0.1	4900	Pass	
Acenaphthylene	3.87	920	Pass 15000		Pass	
Acenaphthene	2.53	1100	Pass	Pass 15000 P		
Fluorene	4.74	860	Pass	9900	Pass	
Phenanthrene	30.20	440	Pass	3100	Pass	
Anthracene	12.75	11000	Pass	74000	Pass	
Fluoranthene	31.67	890	Pass	3100	Pass	
Pyrene	25.71	2000	Pass	7400	Pass	
Benzo(a)anthracene	14.18	13	Fail wso3 @ 0.2	29	Pass	
Chrysene	13.25	27	Pass	57	Pass	
Benzo(b)fluoranthene	12.22	3.7	Fail WS03 @ 0.2 HP10 0-0.1		Fail wso3 @ 0.2 нр10 0-0.1	
Benzo(k)fluoranthene	5.49	100	Pass	190	Pass	

Benzo(a)pyrene	11.78	3	Fail wso3 @ 0.2 HP10 0-0.1	5.7	Fail WS03 @ 0.2 HP10 0-0.1
Indeno(123cd)pyrene	6.97	41	Pass	82	Pass
Dibenz(ah)anthracene	1.49	0.3	Fail ws03 @ 0.2 hp10 0-0.1	0.58	Fail WS03 @ 0.2 HP10 0-0.1
Benzo(ghi)perylene	6.50	350	Pass	640	Pass
		TPH			
VPH Aromatic (>EC5-EC7)	<0.05	300	Pass	56000	Pass
VPH Aromatic (>EC7-EC8)	<0.05	660	Pass	56000	Pass
VPH Aromatic (>EC8-EC10)	<0.05	190	Pass	5000	Pass
EPH Aromatic (>EC10-EC12)	1	380	Pass	5000	Pass
EPH Aromatic (>EC12-EC16)	7	660	Pass	5000	Pass
EPH Aromatic (>EC16-EC21)	31	930	Pass	3800	Pass
EPH Aromatic (>EC21-EC35)	79	1700	Pass	3800	Pass
EPH Aromatic (>EC35- EC44)	15	1700	Pass	3800	Pass
VPH Aliphatic (>C5-C6)	<0.05	160	Pass	600000	Pass
VPH Aliphatic (>C6-C8)	<0.1	530	Pass	620000	Pass
VPH Aliphatic (>C8-C10)	<0.05	150	Pass	13000	Pass
EPH Aliphatic (>C10-C12)	1	760	Pass	13000	Pass
EPH Aliphatic (>C12-C16)	2	4300	Pass	13000	Pass
EPH Aliphatic (>C16-C35)	8	110000	Pass	250000	Pass
EPH Aliphatic (>C35-C44)	1	110000	Pass	250000	Pass

- a. Based on sandy loam soil as defined in SR3 (Environment Agency, 2009c) and 6% soil organic matter (SOM)
- b. Figures are rounded to two significant figures
- c. In applying the rules for non-soil background to the S4UIs, the background ADE is limited to being no larger that the contribution from the relevant soil ADE
- d. Based on comparison of inhalation exposure with inhalation ID
- e. Based on comparison of oral and dermal exposure with oral TDI

Based on published LQM/CIEH S4UIs & DEFRAs C4SLs, exceedances in PAHs and Lead were identified with respect to a Residential with produce end use, and an exceedance in PAHs with respect to a Residential Public Open Space end use.

These exceedances of Lead were identified in WS01 at 0.1mbgl and exceedances in Naphthalene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(ah)anthracene were identified in in HP10 at 0.1mbgl and WS03 at 0.2mbgl.

Due to soil mixing from a range of unidentified sources, and sampling frequency, it is not considered possible to determine hotspot zones at this time.

Therefore, remedial measures will be proposed in section 7 to address these exceedances.

5.2. Asbestos

No asbestos was identified within any of the soil samples taken from across the site.

5.3. Ground Gas

A monitoring well was installed in WS02. A subsequent monitoring visit was undertaken on 15th November 2023.

The results are displayed in the following table.

Test Location	Max recorded CH4 (% vol)	Max recorded CO2 (% vol)	Max. Flow Rate (I/hr)	GSV
WS02	15.7	8.0	0.1	0.0157

The worst-case GSV has been identified as CS2 / Amber. Furthermore, Methane levels have been recorded as >1%, and Carbon Dioxide levels above >5%, which is considered the trigger threshold to be considered CS2/ Amber.

Whilst no further new structures are proposed for the site, the introduction of gas generating soils adjacent to the existing property may pose a risk to end users of the site, should the existing residential property come back into use. It is recommended that internal gas levels in the property be monitored to identify if ground gas migration to potential receptors is complete, and if retrofitting the existing property with ground gas protection measures will be required.

Ground gas monitoring results and corresponding GSVs are contained in Appendix C.

54 Controlled Waters

No significant levels of contaminants of concern were identified, with respect to controlled waters. Therefore, the risk posed to controlled waters is considered to be negligible.

6. Phase II Conceptual Site Model

Human Receptors	Human Receptors					
Source	Pathway	Receptor	Solution			
		Site workers during the redevelopment of the site.	Basic PPE and hygiene facilities should be provided for site workers.			
Exceedances in Lead, Napthalene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(ah)anthracene were identified during this site investigation.	Napthalene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(ah)anthracene were identified during this site Direct dermal contact or ingestion of soils, or inhalation of dust/fibres (i.e. human interaction with surface and subsurface materials).		In areas of soft landscaping, it will be necessary to install a clean cover system of a minimum depth of 500mm. The cover system should comprise imported, verified subsoil & topsoil in areas of proposed soft landscaping. Following installation, a verification study shall be required to assess the depth and chemical composition of the installed capping layer and submit the findings as a verification report to the local authority for approval.			
The site has been identified as CS2 / Amber 1.	The migration and accumulation of ground gases through permeable sub-surface materials and/ or preferential pathways.	Intended end users of the site (Residents).	Whilst no further new structures are proposed for the site, the introduction of gas generating soils adjacent to the existing property may pose a risk to end users of the site, should the existing residential property come back into use. It is recommended that internal gas levels in the property be monitored to identify if ground gas migration to potential receptors is complete, and if			

			retrofitting the existing property with ground gas protection measures will be required.
Environmental Receptors	(Controlled Waters)		
No significant levels of contaminants of concern have been identified with respect to controlled waters.	Lateral and vertical migration of groundwater through permeable sub-surface materials and/ or preferential pathways.	The River Ely to the east of the site as well as underlying aquifers.	No specific remediation is considered to be necessary for this receptor at this time. Further assessment may be required to include further leachate testing.

7. Risk Management & Remediation

Previous sections have quantified the risk posed to identified receptors. The following section details measures and recommendations for dealing with risks associated with soil, gas, and groundwater contamination in respect to the proposed development.

7.1. Remediation to Protect End Users

Exceedances in Lead, Napthalene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(ah)anthracene were identified during this site investigation.

Therefore, In areas of soft landscaping, it will be necessary to install a clean cover system of a minimum depth of 500mm. The cover system should comprise imported, verified subsoil 8 topsoil in areas of proposed soft landscaping. Imported soils should comply chemically with criteria highlighted within Appendix E (Residential with Produce end use).

Following installation, a verification study shall be required to assess the depth and chemical composition of the installed capping layer and submit the findings as a verification report to the local authority for approval.

Due to the uneven nature of the land, steep slope and observed ditches along the side of the bank, it is recommended the topography and stability of the site be considered, to mitigate risk of future movement of the capping system.

7.2. Ground Gas Protection Measures

The site has been identified as CS2 / Amber 1.

Whilst no further new structures are proposed for the site, the introduction of gas generating soils adjacent to the existing property may pose a risk to end users of the site, should the existing residential property come back into use. It is recommended that internal gas levels in the property be monitored to identify if ground gas migration to potential receptors is complete, and if retrofitting the existing property with ground gas protection measures will be required.

It should be noted that this assessment has been made after only 1 monitoring visit. Whilst further monitoring visits are required to complete a full assessment, it is considered unlikely that recommendations would change from those above. Should further structures be proposed for the site, a full ground gas monitoring regime in accordance with BS 8485:2015 should be undertaken.

7.3. Remediation to Protect Controlled Waters

No significant levels of contaminants of concern have been identified with respect to controlled waters at this time. Further assessment may be required at a later date.

7.4. Remediation to Protect Construction Workers

Basic PPE and hygiene facilities should be sufficient for site workers. A risk assessment should be undertaken by the principal contractor before any work begins, including consideration of topography.

8. Conclusions and Recommendations

A phase 2 intrusive investigation was carried out which successfully characterised made ground across the site, within shallow soils. Representative soil samples were taken of these made ground materials and sent for analysis at a UKAS/MCERTS accredited laboratory for analysis of the identified contaminants of concern.

It is considered that the site may be suitable for the proposed use as residential garden area, providing the following recommendations & remedial measures are implemented.

Recommendations:

- In areas of soft landscaping, it will be necessary to install a clean cover system of a minimum depth of 500mm. The cover system should comprise imported, verified subsoil & topsoil in areas of proposed soft landscaping. Imported soils should comply chemically with criteria highlighted within Appendix E (Residential with Produce end use).
- Following installation, a verification study shall be required to assess the depth and chemical composition of the installed capping layer and submit the findings as a verification report to the local authority for approval.
- Due to the uneven nature of the land, steep slope and observed ditches along the side of the bank, it is recommended the topography and stability of the site be considered, to mitigate risk of future movement of the capping system.
- The area of observed burned material in the north west of the site should be scraped and removed from site.

This report should be submitted to your local planning authority for approval.

APPENDIX A

Title

Site Location

Reference

101142

Date 16/11/2023

Site Address

Hillside, Leckwith Road, CF11 8DR

Legend

Approximate Site Centre

Scale NTS

Drawn

AMD

Figure Number

Fig.1

Title

Site Layout

Reference

101142

Date 16/11/2023

Site Address

Hillside, Leckwith Road, CF11 8DR

Legend

Scale NTS Drawn

Figure Number

Fig.2 **AMD**

Title

Photos

Reference

101142

Date 16/11/2023

Site Address

Hillside, Leckwith Road, CF11 8DR

Legend

Scale NTS

Drawn

AMD

Figure Number Fig.3

Development Proposal

Reference

101142

Date 16/11/2023

Site Address

Hillside, Leckwith Road, CF11 8DR

Legend

Borehole location

Scale NTS Drawn

AMD

Figure Number

Fig.4

APPENDIX B

Dice Environment
Project Name: Hillen
Location: Leckwith R
Project No. : 101142

d, Cardiff Client: William Richards Date: 26/10/2023 oad, Cardiff, CF11 8DR Contractor: Drilling Equipment: Window Sample Drill Crew Name: Regional Drilling Borehole Number Level Scale

Hole Type Logged By Page Number

DOIG	WS01	'	WS		Levei		Logged By AD	1:15	Sheet 1 o	
Nell		and In S	itu Testing	Depth	Level	10000			·	
veii	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description			
	0.10	ES					MADE GROUND. Slig slate, blackened wood material and mixed litl	ghtly sandy gravelly clay d chippings, brick, ceran hologies.	Gravel is concrete, nic, bituminous	-
	0.60	ES								-
										- -1
				1.20		Marilli sphariti spha	NO RECOVERY.			-
				2.00		mang mang mang mang mang mang mang mang	E	and of Borehole at 2.00m	1	2
										-
										-3
	Hole Diameter	·	Casing Diameter		1	Chisellin	g	Inclination	and Orientation	-

Depth Base Depth Base

- 1. Beyond the presence of made ground, no visual or olfactory evidence of contamination was observed.
- 2. Refusal at 2.0mbgl.

Client: William Richards Date: 26/10/2023 Project Name: Hillend, Cardiff Location: Leckwith Road, Cardiff, CF11 8DR Contractor: Drilling Equipment: Window Sample Drill Project No.: 101142 Crew Name: Regional Drilling Borehole Number Hole Type Level Logged By Scale Page Number WS02 WS AD 1:30 Sheet 1 of 1 Sample and In Situ Testing Depth Level Well Stratum Description Legend (m) (m) Depth (m) Type Results MADE GROUND. Brown sandy gravelly CLAY. Gravel is fine to coarse mixed lithologies, concrete and ceramic. 0.30 ES 0.70 1.20 MADE GROUND. Reddish brown very clayey very gravelly SAND. Gravel is glass, brick, plastic, ceramic an mixed lithologies. 2.00 ES 2 3.00 NO RECOVERY. 3.50 MADE GROUND. Reddish brown and black slightly clayey sandy gravel. Gravel is ceramic, plastic and mixed lithologies. 4.00 MADE GROUND. Brown mottled black sandy gravelly clay. Gravel 4 is concrete, ceramics, brick and mixed lithologies. 5.00 5 End of Borehole at 5.00m 6 Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Top Depth Base Depth Base Depth Base Depth Top Depth Base Inclination

- 1. Beyond the presence of made ground, no visual or olfactory evidence of contamination was observed.
- 2. Monitoring well installed to 5mbgl.

Dice Environn	nenti
Project Name: H	lillend
Location: Leckw	ith Ro

Client: William Richards Date: 26/10/2023 , Cardiff oad, Cardiff, CF11 8DR Contractor: Project No. : 101142 Crew Name: Regional Drilling Drilling Equipment: Window Sample Drill Borehole Number Hole Type Level Logged By Scale Page Number WS03 WS AD 1:30 Sheet 1 of 1 Sample and In Situ Testing Depth Level Well Stratum Description (m) (m) Depth (m) Type Results MADE GROUND. Brown sandy very gravelly wet CLAY. Gravel is ceramic, concrete, brick fragments, soft plastic, glass and mixed 0.20 ES lithologies. Black staining and odour. 0.50 FS 1.00 NO RECOVERY. 1.50 MADE GROUND. Greyish brown wet clayey sandy gravel. Gravel is fine to coarse brick, concrete, ceramic, mixed lithologies. 2.00 NO RECOVERY. 3.00 MADE GROUND. Grey mottled brown slightly sandy gravelly clay. Gravel is fine to coarse brick, concrete, ceramic and mixed 5.00 5 End of Borehole at 5.00m 6 Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Top Depth Base Duration Depth Base Depth Base Depth Top Depth Base Inclination

Dice Environments

-	rivii onmer	ILU						.							
Projec	t Name: Hille	nd, Carc	liff		Client:	William R	Richards			Date: 26/1	0/2023				
ocatio	on: Leckwith I	Road, C	ardiff, (CF11 8DR	Contra	ctor:									
Projec	t No. : 101142	2			Crew N	lame: Re	gional D	rilling		Drilling Eq	uipment: W	indow Sam	nple Drill		
Bore	ehole Numbe WS04	r		Type /S		Level		Logge Al		Scale Page Nu 1:30 Sheet 1					
Well	Sample a	Type		sting sults	Depth (m)	Level (m)	Legend	ı		Stratum De	escription				
	0.10	ES	1100	Juito			XXXX	MADE	GROUND. Bro	own sandy gr	avelly clay.	Gravel is fine	to .		
	0.40	ES			0.20			MADE	coarse brick fragments, bituminous material and brick fragmen MADE GROUND. Brown clayey sandy gravel with black stainir Gravel is fine to coarse brick, concrete, ceramic, bituminous material, wood chippings and mixed lithologies.						
	0.60 ES				3.00			X MADE	ly clay. Grav chippings a	rel is nd					
					3.50			MADE GROUND. Greyish brown sandy gravelly clay. Gravel is fine to coarse brick, concrete, blackened wood chippings and mixed lithologies.							
					4.00			8	E	End of Boreh	ole at 4.00m			-4 	
														-5 -5 	
	Hole Diameter		Casing f	Diameter			Chisell	ing		T	Inclination	and Orientation	1		
Depth E		r Dept	th Base	Diameter	Depth T	Top Depth		Ouration	Tool	Depth Top	Depth Base	Inclination	Orienta	ation	

Remarks

roject Name: Hills	nd Cardiff	Client	William R	Picharda		e Borehole Date: 26/10/2023					
roject Name: Hille	Road, Cardill Road, Cardiff, CF11 8DR			denarus		Date: 26/10/2023					
				aional Dril	ling	Drilling Equipment: W	indow Sample Drill				
Project No. : 101142 Borehole Numbe	r Hole Type	Crew Name: Regional Dr Level			Logged By	Scale	Page Numbe				
WS05 Sample a	WS and In Situ Testing	Depth	Level		AD	1:10 Sheet					
Well Depth (m)	Type Results	(m)	(m)	Legend	d Stratum Description						
0.20	ES	0.30			material, brick, con	crete and mixed lithologies.					

Hole Diameter		Casing	Diameter		Ch	iselling		Inclination and Orientation				
Depth Base	Diameter	Depth Base	Diameter	Depth Top	Depth Base	Duration	Tool	Depth Top	Depth Base	Inclination	Orientation	

- 1. Beyond the presence of made ground, no visual or olfactory evidence of contamination was observed.
- 2. Refusal at 0.3mbgl on concrete cobbles.

-2

⊗ Dice Enviror	nmenta	3		Trial Pit Log									
Project Name	: Hillend,	, Cardiff		Client: Wil	liam Rich	ards	Date: 26/10/202	23					
Location: Lec	kwith Ro	ad, Cardiff	, CF11 8DR	Contractor	:								
Project No. : 1	101142			Crew Nam	ie:		Equipment:						
Location N HP01		Loca	tion Type HA	L	evel	Logged By AD	Scale 1:10	_					
		tu Testing Results	()	Level (m)	Legend	s	tratum Description	1					
Depth (m)	Туре	Results	. ,		****	MADE GROUND. Slightly sa	andy gravelly clay.	Gravel is	concrete	e, brick,			
0.40	ES		0.40			End	of Borehole at 0.4	Om			- 0.5		
											-2.0		
	ensions				rench Sup	port and Comment			Pumpin	g Data	L		
Pit Length	Pit '	Width	Pit Stability	Shoring U	sed	Remarks		Date	Rate	Rema	rks		

 (⊗	Dice Environmen	ita		P	Percussion Drilling Log								
Projec	t Name: Hiller	nd, Cai	rdiff	Client:	William F	Richards		Date: 26/10/2023					
Locati	on: Leckwith F	Road, (Cardiff, CF11 8DF	R Contra	ctor:								
Projec	et No. : 101142	2		Crew N	lame:			Drilling Equipment:					
Bor	ehole Number HP02	r	Hole Type HA		Level		Logged By AD	Scale 1:50	Page Number Sheet 1 of 1				
Well	Sample a	and In	Situ Testing	Depth	Level	Legend		Stratum Description					
	Depth (m)	Туре	Results	(m)	(m)	~~~	MADE CROUND	Sandy gravelly clay. Gravel is	concrete				
	0.40	ES		0.40			ceramic, brick and	mixed lithologies. End of Borehole at 0.40m	-1				
									-2				
									-3				
									-4				
									-5 -5				
									- - 6 - - -				
									-7 -7				
									-8				
									- - - 9 - -				

Hole Diameter Casing Diameter Chiselling Inclination and Orientation

Depth Base Diameter Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Orientation

Remarks

1. Beyond the presence of made ground, no visual or olfactory evidence of contamination was observed.

10

Dice Enviror	nment	0			Trial Pit Log									
Project Name	: Hillend	d, Cardiff		(Client: Willia	m Richa	ards	Date: 26/10/2023						
Location: Lecl	with R	oad, Cardi	ff, CF11 8DR	(Contractor:									
Project No. : 1	01142			(Crew Name:									
Location N HP03		Loc	ation Type HA		Lev	el	Logged By AD	Scale Page Numbre 1:10 Sheet 1 of						
		itu Testin	()	h	Level (m)	_egend	S	tratum Description	1					
Depth (m)	Туре	Result	s (III)		(''')	XXXX	MADE GROUND. Sandy gra	velly clay Gravel	is cerami	c concre	te brick			
0.40	ES		0.40				fragments and plastics.	of Borehole at 0.4		, contre	RE, DITCK	- 1.5		
												-2.0		
Dim Pit Length	ensions Pi	it Width	Pit Stability		Tre Shoring Use	nch Sup d	oort and Comment Remarks		Date	Pumpir Rate	ng Data Rema	rks		
			,											

Dice Enviror	nment	10			Trial Pit Log									
Project Name	: Hillend	d, Cardiff		Clier	nt: Williar	n Richa	ards	Date: 26/10/2023						
Location: Lecl	with R	oad, Cardi	ff, CF11 8DR	Con	tractor:									
Project No. : 1	01142			Crev	v Name:									
Location N HP04		Loc	ation Type HA		Leve	el	Logged By AD	Scale Page Numb 1:10 Sheet 1 of						
		itu Testin	()	L	evel (m)	egend	S	tratum Description	1					
Depth (m)	Туре	Result	s (III)		(111)	×××	MADE GROUND. Sandy gra			te ceram	ic brick			
0.40	ES		0.40				and mixed lithologies.	of Borehole at 0.4		ic, ceraii	IIC, DITCK	- 1.5		
												-2.0		
Dim Pit Length	ensions Pi	it Width	Pit Stability	Sho	Trer oring Used	nch Supi	port and Comment Remarks		Date	Pumpir Rate	g Data Rema	rks		
<u> </u>					<u> </u>					-				

Dice Enviror			Trial Pit Log											
Project Name	: Hillend	, Cardiff			Client: Wil	iam Ri	cha	rds	Date: 26/10/202	23				
Location: Lec	kwith Ro	ad, Cardif	ff, CF11 8	DR	Contractor	:								
Project No. : '	101142				Crew Nam	e:			Equipment:					
Location N HP05		Loc	ation Type	е	L	evel		Logged By ad	Scale Page Numb 1:10 Sheet 1 of					
Sample a	Type	itu Testing Results		Depth (m)	Level (m) Legend				Stratum Description					
0.40	ES	r count		0.40					avelly clay. Gravel ithologies.				- 0.5	
	ensions	Width	Dit Stabi	ility 1	Shoring	rench S	Supp	ort and Comment		Data	Pumpir	ig Data	rke	
Pit Length	Pit	Width	Pit Stabi	iiity	Shoring U	sed		Remarks		Date	Rate	Remai	KS	

Dice Enviror	nmente	8						Γrial Pit Lo	og				
Project Name	: Hillend	, Cardiff			Client: Wil	iam Ri	icha	rds	Date: 26/10/202	23			
Location: Lec	kwith Ro	ad, Cardif	ff, CF11 80	DR	Contractor	:							
Project No. : '	101142				Crew Nam	e:			Equipment:				
Location N HP06		Loc	ation Type)	Lo	evel		Logged By AD	Scale 1:10			ge Numbe	
Sample a	nd In Si	itu Testing Results		epth (m)	Level (m)	Leger			Stratum Descriptior				
0.40	ES	results		0.40					avelly clay. Gravel ial and mixed lithological and mixed lithologica	ogies.			- 0.5
	ensions	Width	Dit Stabil	lity	Shoring	rench S	Supp	oort and Comment		Data	Pumpir	g Data	rke
Pit Length	Pit	Width	Pit Stabil	iity	Shoring U	sed		Remarks		Date	Rate	Rema	KS

◇ Dice Enviror	nmenta	a				•	Trial	Pit L	og				
Project Name	Hillend	, Cardiff			Client: Will	iam Rich	ards		Date: 26/10/20	23			
Location: Leck	with Ro	ad, Cardif	ff, CF11 8	BDR	Contractor	:							
Project No. : 1	01142				Crew Nam	e:			Equipment:				
Location No	umber	Loca	ation Type	е	Le	evel	Log	gged By AD	Scale 1:10			ge Numbo	
Sample a	nd In Si Type	itu Testing Results		Depth (m)	Level (m)	Legend			Stratum Description	1			
Deptil (III)	туре	Nesult	5			XXXX	MADE GROU	JND. Sandy g	ravelly clay. Gravel	is brick, c	oncrete a	and	
0.10	ES			0.10			mixed litholog		nd of Borehole at 0.1	0m			- 0.5
													- 1.0
:								mont			Dave	a Date	- 1.5
Dime Pit Length	ensions Pit	Width	Pit Stab	oility	Shoring U	rench Sur sed	port and Com	ment Remarks		Date	Pumpin Rate	g Data Rema	rks
			<u></u>									<u></u>	

⊗ Dice Enviror	nment	8				_	Trial Pit L	og				
Project Name	: Hillend	d, Cardiff			Client: Wil	liam Richa	ards	Date: 26/10/202	23			
Location: Lec	kwith R	oad, Cardi	ff, CF11 8DF	₹	Contracto	•••						
Project No. : 1	101142				Crew Nam	ne:		Equipment:				
Location N HP08	3		ation Type HA		L	evel	Logged By AD	Scale 1:10			ge Numb neet 1 of	
Sample a					Level (m)	Legend		Stratum Description	1			
Depth (m)	Туре	Result	5		(111)		MADE GROUND. Dark browood chippings, glass and	own clayey sandy gr mixed lithologies.	avelly top	osoil. Gra	vel is	
0.10	ES		0.1	0			En	d of Borehole at 0.1	Om			- 0.5
												- 1.0
												- 1.5
Dim	ensions	. 146			1	rench Sup	port and Comment				ng Data	
Pit Length	Pi	t Width	Pit Stability		Shoring U	sed	Remarks	Pumping Data marks Date Rate Re				arks

Dice Enviror	nment	a				_	Trial Pit L	og			
Project Name	: Hillend	, Cardiff			Client: Wil	liam Richa	ards	Date: 26/10/202	23		
Location: Lecl	with Ro	ad, Cardi	ff, CF11 8	8DR	Contractor	:					
Project No. : 1	01142				Crew Nam	ie:		Equipment:			
Location N HP09		Loc	ation Typ	ре	L	evel	Logged By AD	Scale 1:10		Page Nun Sheet 1 d	
Sample a				Depth (m)	Level (m)	Legend		Stratum Description			
Depth (m) 0.10	Type	Result		0.10	()		MADE GROUND. Dark br ceramic, brick, glass, woo	d fragments and mixe h sandy gravelly clay.	ed litholo	gies.	
				0.20			glass, wood fragments an	d mixed lithologies. Ind of Borehole at 0.2		o corumo, onos,	- 0.5
											- 1.0
											- 1.5
Dime Pit Length	ensions	Width	Pit Stat	hility	Shoring U	rench Sup	port and Comment Remarks		Date	Pumping Data Rate Rer	marks

Dice Enviror	nment	a					_	Γrial Pit L	og				
Project Name	: Hillend	d, Cardiff			Client: Will	iam R	icha	ards	Date: 26/10/202	23			
Location: Lec	kwith R	oad, Cardi	ff, CF11 8DF	۲ (Contractor	:							
Project No. : '	101142				Crew Nam	e:			Equipment:				
Location N HP10		Loc	ation Type HA		Le	evel		Logged By AD	Scale 1:10			ge Numb neet 1 of	
Sample a	nd In S	itu Testin		th	Level	Legei	nd		Stratum Description	1			
Depth (m)	Туре	Result	s (m)	(m)	Logo	w.	MADE COOLIND Clavery			l := =l==#:	- lauial:	
0.10	ES		0.1	0				MADE GROUND. Clayey and mixed lithologies. Er	sandy gravelly topso		l is plasti	c, brick	- 1.5
Dim	ensions	Т				rench (Sun	port and Comment			Pumnir	ng Data	- 2.0
Pit Length		t Width	Pit Stability	'	Shoring Us	sed	υαμ	Remarks		Date	Rate	Rema	ırks

 ◇ Dice Enviror	nment	a			-	Trial Pit L	og				
Project Name	Hillend	I, Cardiff		Client: Wi	lliam Rich	ards	Date: 26/10/202	23			
Location: Lecl	with Ro	oad, Cardit	ff, CF11 8DR	Contracto	r:						
Project No. : 1	01142			Crew Nan	ne:		Equipment:				
Location N HP11		Loc	ation Type HA	L	.evel	Logged By AD	Scale 1:10			ge Numb neet 1 of	
Sample a			()		Legend		Stratum Description	1			
Depth (m)	Туре	Results	s (m)	(m)		MADE GROUND. Dark bro mixed lithologies, whole br	own clayey sandy gr ricks, cobbles and ce	avelly topement fra	osoil. Gra gments.	avel is	
0.10	ES		0.10			Er	nd of Borehole at 0.1	Om			- 0.5
											- 1.0
											- 1.5
Dim	ensions	Т			Trench Sun	port and Comment			Pumpii	ng Data	_ 2.0
Pit Length		t Width	Pit Stability	Shoring U	Jsed Jsed	Remarks		Date	Rate	Rema	arks

Pit Length Pit Width Pit Stability Shoring Used Remarks Date Rate Remarks

Remarks

Dice Enviror	ment	ta			-	Trial Pit L	og				
Project Name	Hillen	d, Cardiff		Client: Wi	liam Richa	ards	Date: 26/10/202	23			
Location: Leck	with R	oad, Cardi	ff, CF11 8DR	Contracto	r:						
Project No. : 1	01142			Crew Nan	ne:		Equipment:				
Location No HP12	2		ation Type	L	evel	Logged By AD	Scale 1:10			ge Numb	
		Situ Testin	()	Level (m)	Legend		Stratum Description	1			
	Туре	Result	5	()		MADE GROUND. Clayey s brick, metal wire, soft plast	sandy gravel. Gravelics and mixed litholo	l is plastic ogies.	;, glass, o	cobbles.	
0.10	ES		0.10			En	d of Borehole at 0.1	Om			- 0.5
											- 1.0
											- 1.5
Dime	ensions				 Trench Sup	port and Comment			Pumpin	g Data	
Pit Length		it Width	Pit Stability	Shoring L	Ised	Remarks		Date	Rate	Rema	rks

APPENDIX C

GROUNDWATER / GAS MONITORING RECORD SHEET

Client:	William Richard	s		Job No:	101142		Instruments Us	ed:			GFM 435	5	
Project:	Hillside, Cardiff			Date: 15-Nov-23			Monitored By:				AD		
Weather:	Cloudy			Canada,2									
Installation	Pe	ak ^l		Steady ²	Steady ²		Atmospheric	Minutes	Methane		Carbon	Dixoide	Groundwater
No.	CH₄	CO₂	CH₄	CO₂	O ₂	flow rate	Pressure	Monitored	GSV	CS	GSV	CS	depth
	(% vol)	(% vol)	(% vol)	(% vol)			(mbar)						(m)
WS02	15.7	8.0	15.7	8.0 0.4		0.1	1010	5	0.0157	CS2	0.008	CS2	1.95

The peak reading is the maximum recorded level during a monitoring event.
 The steady reading is the level which remained constant after approximately 2 minutes.

APPENDIX D

ANALYTICAL TEST REPORT

Contract no: 127962

Contract name: Hillside, Cardiff

Client reference: 101142

Clients name: Dice Environmental

Clients address: 167 Kennington Road

Nottingham NG8 1QE

Samples received: 31 October 2023

Analysis started: 31 October 2023

Analysis completed: 13 November 2023

Report issued: 13 November 2023

Key U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Senior Reporting Administrator

Chemtech Environmental Limited SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
127962-1	WS01 ES+0	0.10	Sandy Loamy Clay with Gravel & Roots	-	-	14.6
127962-2	WS01 ES	0.60	Loamy Clay with Gravel	-	-	15.4
127962-3	WS02 ES	0.30	Sandy Loamy Clay with Gravel & Roots	-	-	12.3
127962-4	WS02 ES+0	0.70	Loamy Clay with Gravel & Roots	-	-	17.9
127962-5	WS02 WAC ES	2.00	Sandy Clayey Loam with Gravel & Roots	-	-	13.4
127962-6	WS03 ES+0	0.20	Sandy Loamy Clay with Gravel & Roots	-	-	15.6
127962-7	WS03 ES	0.50	Loamy Clay with Gravel & Roots	-	-	13.2
127962-8	WS04 ES+0	0.10	Loamy Clay with Gravel & Roots	-	-	13.5
127962-9	WS04 WAC ES	0.40	Sandy Loamy Clay with Gravel & Roots	-	-	16.5
127962-10	WS04 ES	0.60	Sandy Loamy Clay with Gravel & Roots	-	-	16.4
127962-11	WS05 ES +0	0.20	Sandy Loamy Clay with Gravel	-	-	13.2
127962-12	HP01 ES	0-0.4	Sandy Clayey Loamy with Gravel & Roots	-	-	11.5
127962-13	HP02 ES	0-0.4	Loamy Clay with Gravel & Roots	-	-	17.9
127962-14	HP03 ES	0-0.4	Loamy Clay with Gravel & Roots	-	-	16.6
127962-15	HP04 ES	0-0.4	Clayey Loam with Gravel & Roots	-	-	14.3
127962-16	HP05 ES	0-0.4	Sandy Loamy Clay with Gravel & Roots	-	-	31.6
127962-17	HP06 ES	0-0.4	Loamy Clay with Gravel & Roots	-	-	21.0
127962-18	HP07 ES	0-0.1	Loamy Clay with Gravel & Roots	-	-	13.6
127962-19	HP08 ES	0-0.1	Clayey Loam with Gravel & Roots	-	-	15.7
127962-20	HP09 ES + O	0-0.1	Clayey Loam with Gravel & Roots	-	-	14.8
127962-21	HP10 ES	0-0.1	Clayey Loam with Gravel & Roots	-	-	14.1
127962-22	HP11 ES+O	0-0.1	Sandy Loamy Clay with Gravel & Roots	-	-	21.1
127962-23	HP12 ES+O	0-0.1	Sandy Loamy Clay with Gravel & Roots	-	-	16.4

			127062.1	127062.2	127062.2	127062.4	127062 5	127062.6
Lab number Sample id			127962-1 WS01 ES+0	127962-2 WS01 ES	127962-3 WS02 ES	127962-4 WS02 FS+0	127962-5 WS02 WAC ES	127962-6 WS03 ES+0
Depth (m)			0.10	0.60	0.30	0.70	2.00	0.20
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units						
Antimony (total)	CE264	mg/kg Sb	-	-	-	-	13.0	-
Arsenic (total)	CE264 ^M	mg/kg As	9.0	10.9	8.2	10.5	12.9	9.8
Barium (total)	CE264 ^U	mg/kg Ba	-	-	-	-	400.7	-
Cadmium (total)	CE264 ^M	mg/kg Cd	<2	<2	<2	<2	<2	<2
Chromium (total)	CE264 ^U	mg/kg Cr	27.7	32.6	33.4	70.4	59.2	32.2
Chromium (VI)	CE263	mg/kg CrVI	<0.04	<0.04	0.07	<0.04	-	<0.04
Copper (total)	CE264 ^M	mg/kg Cu	22.8	25.6	38.8	33.3	36.2	26.5
Lead (total)	CE264 ^U	mg/kg Pb	209.2	77.1	53.5	88.4	91.7	68.8
Mercury (total)	CE264 ^U	mg/kg Hg	<2	<2	<2	<2	<2	<2
Molybdenum (total)	CE264	mg/kg Mo	-	-	-	-	2.2	-
Nickel (total)	CE264 ^M	mg/kg Ni	17.0	22.6	39.3	26.1	20.5	21.2
Selenium (total)	CE264	mg/kg Se	<3	<3	<3	<3	<3	<3
Vanadium (total)	CE264 ^U	mg/kg V	111.9	125.6	120.5	129.7	122.3	121.9
Zinc (total)	CE264 ^M	mg/kg Zn	104.2	119.4	176.0	162.0	316.4	149.1
рН	CE004 ^M	units	8.0	7.6	7.9	8.0	-	7.8
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	243	1129	1437	395	-	254
Sulphate (acid extractable)	CE062 ^M	mg/kg SO ₄	1424	3220	5269	2571	-	1306
Total Organic Carbon (TOC)	CE197	% w/w C	2.6	2.6	2.0	3.8	-	3.0
Estimate of OMC (calculated from TOC)	CE197	% w/w	4.5	4.6	3.4	6.5	-	5.2
РАН	•	•						
Naphthalene	CE087 ^M	mg/kg	0.04	0.27	0.06	0.10	-	0.97
Acenaphthylene	CE087 ^M	mg/kg	0.03	0.11	<0.02	0.03	-	3.85
Acenaphthene	CE087 ^M	mg/kg	0.03	0.06	0.04	0.07	-	0.56
Fluorene	CE087 ^U	mg/kg	0.03	0.07	0.04	0.07	-	5.05
Phenanthrene	CE087 ^M	mg/kg	0.38	0.43	0.30	0.54	-	25.45
Anthracene	CE087 ^U	mg/kg	0.11	0.35	0.13	0.20	-	12.75
Fluoranthene	CE087 ^M	mg/kg	0.71	0.74	0.71	1.08	-	30.80
Pyrene	CE087 ^M	mg/kg	0.60	0.82	0.61	0.83	-	23.57
Benzo(a)anthracene	CE087 ^U	mg/kg	0.37	0.38	0.41	0.57	-	14.18
Chrysene	CE087 ^M	mg/kg	0.53	0.40	0.38	0.75	-	13.25
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.49	0.54	0.52	0.72	-	11.54
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.19	0.25	0.19	0.29	-	5.49
Benzo(a)pyrene	CE087 ^U	mg/kg	0.38	0.39	0.33	0.48	-	11.45
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.27	0.32	0.30	0.41	-	6.28
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.04	0.06	0.05	0.08	-	1.36
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.22	0.27	0.25	0.35	-	5.56
PAH (total of USEPA 16)	CE087	mg/kg	4.42	5.45	4.33	6.58	-	172
ТРН	•	•						
		mg/kg	<0.05	-	-	<0.05	-	<0.05
VPH Aromatic (>EC5-EC7)	\$	ilig/kg	10.00			l		
VPH Aromatic (>EC5-EC7) VPH Aromatic (>EC7-EC8)	\$	mg/kg	<0.05	-	-	<0.05	-	<0.05

Lab number			127962-1	127962-2	127962-3	127962-4	127962-5	127962-6
Sample id			WS01 ES+0	WS01 ES	WS02 ES		WS02 WAC ES	
Depth (m)			0.10	0.60	0.30	0.70	2.00	0.20
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units						
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	<0.5	-	-	<0.5	-	1
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	<1	-	-	<1	-	4
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	<2	-	-	<2	-	25
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	<5	-	ı	8	-	52
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	<1.5	-	-	<1.5	-	11
VPH Aliphatic (>C5-C6)	\$	mg/kg	<0.05	-	-	<0.05	-	<0.05
VPH Aliphatic (>C6-C8)	\$	mg/kg	<0.1	-	-	<0.1	-	<0.1
VPH Aliphatic (>C8-C10)	\$	mg/kg	<0.05	-	-	<0.05	-	<0.05
EPH Aliphatic (>C10-C12)	CE250	mg/kg	<0.5	-	-	<0.5	-	1
EPH Aliphatic (>C12-C16)	CE250	mg/kg	1	ı	ı	<0.5	-	2
EPH Aliphatic (>C16-C35)	CE250	mg/kg	<4.5	-	ı	<4.5	-	8
EPH Aliphatic (>C35-C44)	CE250	mg/kg	<1	-	-	<1	-	<1
РСВ								
PCB Congener 77	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 81	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 105	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 114	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 118	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 123	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 126	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 156	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 157	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 167	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 169	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB Congener 189	CE181	mg/kg	<0.006	-	<0.006	-	-	<0.006
PCB (total of WHO 12)	CE181	mg/kg	<0.061	-	<0.061	-	-	<0.061
Subcontracted Analysis								
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	-	NAD

			127062 7	127062.0	127062.0	127062.10	127062.11	107060 10
Lab number Sample id			127962-7 WS03 ES	127962-8 WS04 ES+0	127962-9 WS04 WAC ES	127962-10 WS04 ES	127962-11 WS05 ES +0	127962-12 HP01 ES
Depth (m)			0.50	0.10	0.40	0.60	0.20	0-0.4
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units						
Antimony (total)	CE264	mg/kg Sb	-	-	12.2	-	-	-
Arsenic (total)	CE264 ^M	mg/kg As	9.9	11.6	10.9	10.9	9.4	9.7
Barium (total)	CE264 ^U	mg/kg Ba	-	-	380.4	-	-	-
Cadmium (total)	CE264 ^M	mg/kg Cd	<2	<2	<2	<2	<2	<2
Chromium (total)	CE264 ^U	mg/kg Cr	30.1	31.8	39.1	31.3	28.7	36.1
Chromium (VI)	CE263	mg/kg CrVI	<0.04	<0.04	-	<0.04	<0.04	<0.04
Copper (total)	CE264 ^M	mg/kg Cu	30.0	26.0	68.9	43.7	31.5	31.3
Lead (total)	CE264 ^U	mg/kg Pb	81.1	49.8	101.1	96.3	72.3	61.4
Mercury (total)	CE264 ^U	mg/kg Hg	<2	<2	<2	<2	<2	<2
Molybdenum (total)	CE264	mg/kg Mo	-	-	2.2	-	-	-
Nickel (total)	CE264 ^M	mg/kg Ni	22.2	27.8	25.2	22.2	19.0	22.3
Selenium (total)	CE264	mg/kg Se	<3	<3	<3	<3	<3	<3
Vanadium (total)	CE264 ^U	mg/kg V	120.3	83.3	150.5	146.0	102.3	122.4
Zinc (total)	CE264 ^M	mg/kg Zn	126.1	119.8	212.7	197.0	173.7	107.7
рН	CE004 ^M	units	8.4	8.1	-	8.0	8.2	8.1
Sulphate (2:1 water soluble)	CE061 ^U	mg/I SO ₄	895	455	-	1572	1434	476
Sulphate (acid extractable)	CE062 ^M	mg/kg SO ₄	2429	2049	-	9127	4002	1638
Total Organic Carbon (TOC)	CE197	% w/w C	2.5	2.0	-	2.8	2.8	2.4
Estimate of OMC (calculated from TOC)	CE197	% w/w	4.3	3.5	-	4.8	4.8	4.2
РАН								
Naphthalene	CE087 ^M	mg/kg	0.12	0.04	-	0.08	0.04	0.04
Acenaphthylene	CE087 ^M	mg/kg	0.02	<0.02	-	<0.02	0.05	<0.02
Acenaphthene	CE087 ^M	mg/kg	0.07	<0.02	-	0.02	0.09	<0.02
Fluorene	CE087 ^U	mg/kg	0.08	0.04	-	<0.02	0.28	<0.02
Phenanthrene	CE087 ^M	mg/kg	0.65	0.16	-	0.20	2.22	0.21
Anthracene	CE087 ^U	mg/kg	0.32	0.33	-	0.07	1.29	0.06
Fluoranthene	CE087 ^M	mg/kg	1.02	0.24	-	0.46	4.25	0.47
Pyrene	CE087 ^M	mg/kg	0.81	0.19	-	0.40	2.83	0.37
Benzo(a)anthracene	CE087 ^U	mg/kg	0.50	0.14	-	0.28	2.22	0.35
Chrysene	CE087 ^M	mg/kg	0.54	0.16	-	0.29	2.25	0.32
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.47	0.16	-	0.42	1.91	0.46
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.17	0.07	-	0.15	0.79	0.15
Benzo(a)pyrene	CE087 ^U	mg/kg	0.41	0.14	-	0.32	1.48	0.31
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.23	0.09	-	0.29	0.85	0.24
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.05	<0.02	-	0.07	0.20	0.05
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.24	0.09	-	0.31	0.77	0.26
PAH (total of USEPA 16)	CE087	mg/kg	5.71	1.83	-	3.35	21.5	3.30
ТРН								
VPH Aromatic (>EC5-EC7)	\$	mg/kg	-	<0.05	-	-	<0.05	-
VPH Aromatic (>EC7-EC8)	\$	mg/kg	-	<0.05	-	-	<0.05	-
	\$		-	<0.05				

Lab number			127962-7	127962-8	127962-9	127962-10	127962-11	127962-12
Sample id			WS03 ES	WS04 ES+0	WS04 WAC ES	WS04 ES	WS05 ES +0	HP01 ES
Depth (m)			0.50	0.10	0.40	0.60	0.20	0-0.4
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units						
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	-	1	-	-	<0.5	-
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	-	7	-	-	<1	-
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	-	31	-	-	<2	-
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	-	79	-	-	5	-
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	-	15	-	-	<1.5	-
VPH Aliphatic (>C5-C6)	\$	mg/kg	-	<0.05	-	-	<0.05	-
VPH Aliphatic (>C6-C8)	\$	mg/kg	-	<0.1	-	-	<0.1	-
VPH Aliphatic (>C8-C10)	\$	mg/kg	-	<0.05	-	-	<0.05	-
EPH Aliphatic (>C10-C12)	CE250	mg/kg	-	1	-	-	<0.5	-
EPH Aliphatic (>C12-C16)	CE250	mg/kg	-	1	-	-	1	-
EPH Aliphatic (>C16-C35)	CE250	mg/kg	-	8	-	ı	<4.5	-
EPH Aliphatic (>C35-C44)	CE250	mg/kg	-	1	-	-	<1	-
РСВ								
PCB Congener 77	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 81	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 105	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 114	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 118	CE181	mg/kg	-	-	-	ı	<0.006	-
PCB Congener 123	CE181	mg/kg	-	-	-	ı	<0.006	-
PCB Congener 126	CE181	mg/kg	-	-	-	ı	<0.006	-
PCB Congener 156	CE181	mg/kg	-	-	-	ı	<0.006	-
PCB Congener 157	CE181	mg/kg	-	-	-	ı	<0.006	-
PCB Congener 167	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 169	CE181	mg/kg	-	-	-	-	<0.006	-
PCB Congener 189	CE181	mg/kg	-	-	-	-	<0.006	-
PCB (total of WHO 12)	CE181	mg/kg	-	-	-	-	<0.061	-
Subcontracted Analysis								
Asbestos (qualitative)	\$	-	NAD	NAD	-	NAD	NAD	NAD

Marche Month Marche Month Mo									
Depth (n) Depth (n) Depth (n) Depth (n) Perf (n)	Lab number			127962-13	127962-14	127962-15	127962-16	127962-17	127962-18
Date sampled Method (Method	•								
Nethod Variable									
Arsenic (total)	· ·	Method	Units	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -
Benum (total)	Antimony (total)	CE264	mg/kg Sb	-	-	-	-	-	-
Cadmium (total)	Arsenic (total)	CE264 ^M	mg/kg As	9.5	11.2	12.0	11.1	10.9	31.4
Chromium (total)	Barium (total)	CE264 ^U	mg/kg Ba	-	-	-	-	-	-
Chronium (VI)	Cadmium (total)	CE264 ^M	mg/kg Cd	<2	<2	<2	<2	<2	<2
Copper (total)	Chromium (total)	CE264 ^U	mg/kg Cr	32.9	38.4	60.7	31.1	64.9	37.8
Lead (total)	Chromium (VI)	CE263	mg/kg CrVI	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Mercury (total) CE264 ¹ mg/kg Hg <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Copper (total)	CE264 ^M	mg/kg Cu	30.1	29.5	35.6	26.4	37.6	29.3
Molybdenum (total) CE264 mg/kg Mo - <th< td=""><td>Lead (total)</td><td>CE264^U</td><td>mg/kg Pb</td><td>68.5</td><td>81.5</td><td>74.0</td><td>77.6</td><td>76.1</td><td>60.9</td></th<>	Lead (total)	CE264 ^U	mg/kg Pb	68.5	81.5	74.0	77.6	76.1	60.9
Nickel (total)	Mercury (total)	CE264 ^U	mg/kg Hg	<2	<2	<2	<2	<2	<2
Selenium (total) CE264 mg/kg Se	Molybdenum (total)	CE264	mg/kg Mo	-	-	-	-	-	-
Vanadium (total) CE264" mg/kg V 100.9 106.6 119.9 99.6 111.7 200.9 Zinc (total) CE264" mg/kg Zn 139.5 137.4 136.6 114.6 151.6 128.4 pH CE004" units 7.8 7.9 8.1 7.9 8.1 8.2 Sulphate (2:1 water soluble) CE061" mg/kg SO, 3330 2096 1279 1880 1281 1643 Total Organic Carbon (TOC) CE197 % w/w C 2.7 2.8 3.8 6.1 3.4 4.4 Estimate of OMC (calculated from TOC) CE197 % w/w W 4.6 4.9 6.5 10.5 5.9 7.6 PAH Naphthalene CE087" mg/kg Q <0.02 <0.02 0.13 0.09 0.06 0.08 Acenaphthylene CE087" mg/kg <0.02 <0.02 0.15 0.05 <0.02 0.06 0.06 Acenaphthene CE087" mg/kg <0.02 <0.02 0.15 0.05 0.00 0.00 0.00 Fluorene CE087" mg/kg <0.02 <0.02 0.16 0.06 0.07 0.03 Fluorene CE087" mg/kg <0.02 <0.02 0.16 0.06 0.07 0.03 Fluorene CE087" mg/kg <0.02 <0.02 0.16 0.06 0.07 0.03 Fluorene CE087" mg/kg <0.02 <0.02 0.16 0.06 0.07 0.03 Fluorene CE087" mg/kg <0.02 <0.02 0.10 0.10 0.65 0.08 Anthracene CE087" mg/kg <0.02 <0.02 0.10 0.10 0.06 0.08 Fluoranthene CE087" mg/kg <0.02 <0.02 0.10 0.10 0.05 0.5 0.02 0.06 Elioranthene CE087" mg/kg <0.02 <0.02 0.14 0.06 0.08 0.04 Fluoranthene CE087" mg/kg 0.04 0.05 0.32 0.17 0.30 0.46 Fluoranthene CE087" mg/kg 0.14 0.19 1.77 0.96 1.56 1.98 Pyrene CE087" mg/kg 0.11 0.14 1.39 0.77 1.20 1.72 Benzo(a)anthracene CE087" mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087" mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087" mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087" mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087" mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Benzo(b)fluoranthene CE087" mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Didenc(123d)pyrene CE087" mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 Didenc(123d)pyrene CE087" mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 Dibenzo(h)pherylene CE087" mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 Dibenzo(h)pherylene CE087" mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 TPH VPH Aromatic (>EC567CT) \$ mg/kg 0.07 0.08 0.71 0.33 0.59 0.50 ESCORT mg/kg 0.07 0.08 0.71 0.33 0.59 0.50 ESCORT mg/kg 0.07 0.08 0.71 0.35 0.59 ESCORT mg/kg 0.07 0.08 0.71 0.35 0.5	Nickel (total)	CE264 ^M	mg/kg Ni	24.1	23.7	23.0	18.2	22.8	13.5
Zinc (total) CE264** mg/kg Zn 139.5 137.4 136.6 114.6 151.6 128.4 pH CE004 ** units 7.8 7.9 8.1 7.9 8.1 8.2 Sulphate (2:1 water soluble) CE061 ** mg/kg SO ₄ 931 606 177 364 229 221 Sulphate (acid extractable) CE062 ** mg/kg SO ₄ 3930 2096 1259 1890 1281 1643 Total Organic Carbon (TOC) CE197 % w/w 2.7 2.8 3.8 6.1 3.4 4.4 4 4.6 4.9 6.5 10.5 5.9 7.6 PAH Namp/kg <0.02	Selenium (total)	CE264	mg/kg Se	<3	<3	<3	<3	<3	<3
pH CE004 [™] units 7.8 7.9 8.1 7.9 8.1 8.2 Sulphate (2:1 water soluble) CE061 [™] mg/l SO ₄ 931 606 177 364 229 221 Sulphate (acid extractable) CE062 [™] mg/kg SO ₄ 3930 2096 1259 1890 1281 1643 Total Organic Carbon (TOC) CE197 % w/w 2.7 2.8 3.8 6.1 3.4 4.4 Estimate of OMC (calculated from TOC) CE197 % w/w 4.6 4.9 6.5 10.5 5.9 7.6 PAH Walker Secondary mg/kg <0.02	Vanadium (total)	CE264 ^U	mg/kg V	100.9	106.6	119.9	99.6	111.7	200.9
Sulphate (2:1 water soluble) CE061	Zinc (total)	CE264 ^M	mg/kg Zn	139.5	137.4	136.6	114.6	151.6	128.4
Sulphate (acid extractable) CE062 [™] mg/kg SO ₄ 3930 2096 1259 1890 1281 1643 Total Organic Carbon (TOC) CE197 % w/w C 2.7 2.8 3.8 6.1 3.4 4.4 Estimate of OMC (calculated from TOC) CE197 % w/w 4.6 4.9 6.5 10.5 5.9 7.6 PAH Naphthalene CE087 [™] mg/kg <0.02	рН	CE004 ^M	units	7.8	7.9	8.1	7.9	8.1	8.2
Total Organic Carbon (TOC)	Sulphate (2:1 water soluble)	CE061 ^U	mg/I SO ₄	931	606	177	364	229	221
Estimate of OMC (calculated from TOC)	Sulphate (acid extractable)	CE062 ^M	mg/kg SO₄	3930	2096	1259	1890	1281	1643
PAH Naphthalene CE087 [™] mg/kg <0.02 <0.02 0.13 0.09 0.06 0.08 Acenaphthylene CE087 [™] mg/kg <0.02	Total Organic Carbon (TOC)	CE197	% w/w C	2.7	2.8	3.8	6.1	3.4	4.4
Naphthalene	Estimate of OMC (calculated from TOC)	CE197	% w/w	4.6	4.9	6.5	10.5	5.9	7.6
Acenaphthylene	РАН	•	•						
Acenaphthene	Naphthalene	CE087 ^M	mg/kg	<0.02	<0.02	0.13	0.09	0.06	0.08
Fluorene	Acenaphthylene	CE087 ^M	mg/kg	<0.02	<0.02	0.05	<0.02	0.06	0.06
Phenanthrene CE087 ^M mg/kg mg/kg 0.07 0.09 0.93 0.53 0.79 0.55 Anthracene CE087 ^U mg/kg 0.04 0.05 0.32 0.17 0.30 0.46 Fluoranthene CE087 ^M mg/kg 0.14 0.19 1.77 0.96 1.56 1.98 Pyrene CE087 ^M mg/kg 0.11 0.14 1.39 0.77 1.20 1.72 Benzo(a)anthracene CE087 ^M mg/kg 0.08 0.12 1.08 0.58 0.88 1.53 Chrysene CE087 ^M mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087 ^M mg/kg 0.01 0.15 1.32 0.66 1.10 2.09 Benzo(k)fluoranthene CE087 ^M mg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 ^M mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 ^M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 ^M mg/kg 0.00 0.00 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)aptrene CE087 ^M mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 PAH (total of USEPA 16) CE087 mg/kg 0.88 1.18 11.7 6.05 9.64 15.1 TPH VPH Aromatic (>EC5-EC7) \$ mg/kg	Acenaphthene	CE087 ^M	mg/kg	<0.02	<0.02	0.16	0.06	0.07	0.03
Anthracene	Fluorene	CE087 ^U	mg/kg	<0.02	<0.02	0.14	0.06	0.08	0.04
Fluoranthene CE087 ^M mg/kg 0.14 0.19 1.77 0.96 1.56 1.98 Pyrene CE087 ^M mg/kg 0.11 0.14 1.39 0.77 1.20 1.72 Benzo(a)anthracene CE087 ^M mg/kg 0.08 0.12 1.08 0.58 0.88 1.53 Chrysene CE087 ^M mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087 ^M mg/kg 0.11 0.15 1.32 0.66 1.10 2.09 Benzo(k)fluoranthene CE087 ^M mg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 ^M mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 ^M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 ^M mg/kg 0.07 0.08 0.71 <td< td=""><td>Phenanthrene</td><td>CE087 ^M</td><td>mg/kg</td><td>0.07</td><td>0.09</td><td>0.93</td><td>0.53</td><td>0.79</td><td>0.55</td></td<>	Phenanthrene	CE087 ^M	mg/kg	0.07	0.09	0.93	0.53	0.79	0.55
Pyrene CE087 Mmg/kg mg/kg 0.11 0.14 1.39 0.77 1.20 1.72 Benzo(a)anthracene CE087 Mmg/kg 0.08 0.12 1.08 0.58 0.88 1.53 Chrysene CE087 Mmg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087 Mmg/kg 0.11 0.15 1.32 0.66 1.10 2.09 Benzo(k)fluoranthene CE087 Mmg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 Mmg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 Mmg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 Mmg/kg <0.02	Anthracene	CE087 ^U	mg/kg	0.04	0.05	0.32	0.17	0.30	0.46
Benzo(a)anthracene CE087 [□] mg/kg 0.08 0.12 1.08 0.58 0.88 1.53 Chrysene CE087 ^M mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)filuoranthene CE087 ^M mg/kg 0.11 0.15 1.32 0.66 1.10 2.09 Benzo(k)filuoranthene CE087 ^M mg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 ^U mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 ^M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 ^M mg/kg <0.02 <0.02 0.17 0.08 0.14 0.26	Fluoranthene	CE087 ^M	mg/kg	0.14	0.19	1.77	0.96	1.56	1.98
Chrysene CE087 M mg/kg 0.09 0.12 1.25 0.68 1.03 1.26 Benzo(b)fluoranthene CE087 M mg/kg 0.11 0.15 1.32 0.66 1.10 2.09 Benzo(k)fluoranthene CE087 M mg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 M mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 M mg/kg <0.02	Pyrene	CE087 ^M	mg/kg	0.11	0.14	1.39	0.77	1.20	1.72
Benzo(b)fluoranthene CE087 Mmg/kg 0.11 0.15 1.32 0.66 1.10 2.09 Benzo(k)fluoranthene CE087 Mmg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 Mmg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 Mmg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 Mmg/kg <0.02	Benzo(a)anthracene	CE087 ^U	mg/kg	0.08	0.12	1.08	0.58	0.88	1.53
Benzo(k)fluoranthene CE087 M mg/kg 0.05 0.06 0.48 0.27 0.44 0.72 Benzo(a)pyrene CE087 M mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 M mg/kg <0.02	Chrysene	CE087 ^M	mg/kg	0.09	0.12	1.25	0.68	1.03	1.26
Benzo(a)pyrene CE087 □ mg/kg 0.07 0.11 0.99 0.48 0.80 1.90 Indeno(123cd)pyrene CE087 M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 M mg/kg <0.02	Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.11	0.15	1.32	0.66	1.10	2.09
Indeno(123cd)pyrene CE087 M mg/kg 0.06 0.08 0.77 0.34 0.54 1.27 Dibenz(ah)anthracene CE087 M mg/kg <0.02	Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.05	0.06	0.48	0.27	0.44	0.72
Dibenz(ah)anthracene CE087 M mg/kg <0.02 <0.02 0.17 0.08 0.14 0.26 Benzo(ghi)perylene CE087 M mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 PAH (total of USEPA 16) CE087 Mg/kg 0.88 1.18 11.7 6.05 9.64 15.1 TPH VPH Aromatic (>EC5-EC7) \$ mg/kg -	Benzo(a)pyrene	CE087 ^U	mg/kg	0.07	0.11	0.99	0.48	0.80	1.90
Benzo(ghi)perylene CE087 M mg/kg 0.07 0.08 0.71 0.33 0.59 1.13 PAH (total of USEPA 16) CE087 mg/kg 0.88 1.18 11.7 6.05 9.64 15.1 TPH VPH Aromatic (>EC5-EC7) \$ mg/kg - <td>Indeno(123cd)pyrene</td> <td>CE087 ^M</td> <td>mg/kg</td> <td>0.06</td> <td>0.08</td> <td>0.77</td> <td>0.34</td> <td>0.54</td> <td>1.27</td>	Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.06	0.08	0.77	0.34	0.54	1.27
PAH (total of USEPA 16) CE087 mg/kg 0.88 1.18 11.7 6.05 9.64 15.1 TPH VPH Aromatic (>EC5-EC7) \$ mg/kg VPH Aromatic (>EC7-EC8) \$ mg/kg	Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	<0.02	0.17	0.08	0.14	0.26
TPH VPH Aromatic (>EC5-EC7) \$ mg/kg - <td>Benzo(ghi)perylene</td> <td>CE087 ^M</td> <td>mg/kg</td> <td>0.07</td> <td>0.08</td> <td>0.71</td> <td>0.33</td> <td>0.59</td> <td>1.13</td>	Benzo(ghi)perylene	CE087 ^M	mg/kg	0.07	0.08	0.71	0.33	0.59	1.13
VPH Aromatic (>EC5-EC7) \$ mg/kg -	PAH (total of USEPA 16)	CE087	mg/kg	0.88	1.18	11.7	6.05	9.64	15.1
VPH Aromatic (>EC7-EC8) \$ mg/kg - - - - - -	ТРН								
	VPH Aromatic (>EC5-EC7)	\$	mg/kg	-	-	-	-	-	-
VPH Aromatic (>EC8-EC10) \$ mg/kg - - - - - -	VPH Aromatic (>EC7-EC8)	\$	mg/kg	-	-	-	-	-	-
	VPH Aromatic (>EC8-EC10)	\$	mg/kg	-	-	-	-	-	-

Lab number			127962-13	127962-14	127962-15	127962-16	127962-17	127962-18
Sample id			HP02 ES	HP03 ES	HP04 ES	HP05 ES	HP06 ES	HP07 ES
Depth (m)			0-0.4	0-0.4	0-0.4	0-0.4	0-0.4	0-0.1
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units						
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	-	-	-	-	-	-
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	-	-	-	-	-	-
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	-	-	-	-	-	-
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	-	-	-	-	-	i
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	-	-	-	ı	-	1
VPH Aliphatic (>C5-C6)	\$	mg/kg	-	-	-	-	-	-
VPH Aliphatic (>C6-C8)	\$	mg/kg	-	-	-	-	-	i
VPH Aliphatic (>C8-C10)	\$	mg/kg	-	-	-	ı	-	1
EPH Aliphatic (>C10-C12)	CE250	mg/kg	-	-	-	i	-	ı
EPH Aliphatic (>C12-C16)	CE250	mg/kg	-	-	-	i	-	-
EPH Aliphatic (>C16-C35)	CE250	mg/kg	-	-	-	-	-	-
EPH Aliphatic (>C35-C44)	CE250	mg/kg	-	-	-	-	-	-
РСВ								
PCB Congener 77	CE181	mg/kg	-	-	-	ı	-	-
PCB Congener 81	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 105	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 114	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 118	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 123	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 126	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 156	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 157	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 167	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 169	CE181	mg/kg	-	-	-	-	-	-
PCB Congener 189	CE181	mg/kg	-	-	-	-	-	-
PCB (total of WHO 12)	CE181	mg/kg	-	-	-	-	-	-
Subcontracted Analysis								
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	NAD	NAD

Lab number			127962-19	127062 20	127962-21	127062 22	127962-23
Sample id			127962-19 HP08 ES	127962-20 HP09 ES + O	127962-21 HP10 ES	127962-22 HP11 ES+0	HP12 ES+0
Depth (m)			0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units					
Antimony (total)	CE264	mg/kg Sb	-	-	-	-	-
Arsenic (total)	CE264 ^M	mg/kg As	9.6	9.0	10.5	12.4	12.2
Barium (total)	CE264 ^U	mg/kg Ba	1	-	-	ı	-
Cadmium (total)	CE264 ^M	mg/kg Cd	<2	<2	<2	<2	<2
Chromium (total)	CE264 ^U	mg/kg Cr	35.0	44.5	59.8	91.7	50.8
Chromium (VI)	CE263	mg/kg CrVI	<0.04	<0.04	<0.04	<0.04	0.05
Copper (total)	CE264 ^M	mg/kg Cu	25.5	28.1	30.6	35.5	25.4
Lead (total)	CE264 ^U	mg/kg Pb	56.4	50.0	62.0	85.5	68.2
Mercury (total)	CE264 ^U	mg/kg Hg	<2	<2	<2	<2	<2
Molybdenum (total)	CE264	mg/kg Mo	-	-	-	-	-
Nickel (total)	CE264 ^M	mg/kg Ni	20.4	17.5	19.9	27.0	21.4
Selenium (total)	CE264	mg/kg Se	<3	<3	<3	<3	<3
Vanadium (total)	CE264 [∪]	mg/kg V	116.6	134.3	120.0	108.6	92.7
Zinc (total)	CE264 ^M	mg/kg Zn	107.2	105.4	126.4	160.4	191.4
рН	CE004 ^M	units	8.1	7.8	8.2	8.1	8.0
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO₄	540	111	97	41	582
Sulphate (acid extractable)	CE062 ^M	mg/kg SO ₄	2110	915	1684	1061	2627
Total Organic Carbon (TOC)	CE197	% w/w C	3.5	4.2	4.7	3.8	2.1
Estimate of OMC (calculated from TOC)	CE197	% w/w	6.0	7.3	8.2	6.5	3.6
РАН							
Naphthalene	CE087 ^M	mg/kg	0.09	0.24	37.60	0.06	0.06
Acenaphthylene	CE087 ^M	mg/kg	0.03	0.07	3.87	0.04	0.03
Acenaphthene	CE087 ^M	mg/kg	0.04	0.07	2.53	0.04	0.03
Fluorene	CE087 ^U	mg/kg	0.04	0.08	4.74	0.04	0.04
Phenanthrene	CE087 ^M	mg/kg	0.47	0.94	30.20	1.10	0.37
Anthracene	CE087 ^U	mg/kg	0.16	0.50	9.14	0.43	0.86
Fluoranthene	CE087 ^M	mg/kg	0.79	2.41	31.67	2.22	0.68
Pyrene	CE087 ^M	mg/kg	0.64	1.94	25.71	1.83	0.56
Benzo(a)anthracene	CE087 ^U	mg/kg	0.47	1.34	12.64	1.07	0.46
Chrysene	CE087 ^M	mg/kg	0.59	1.44	12.99	1.07	0.59
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.69	1.57	12.22	1.01	0.61
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.24	0.61	4.58	0.39	0.22
Benzo(a)pyrene	CE087 ^U	mg/kg	0.45	1.19	11.78	0.83	0.44
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.38	0.77	6.97	0.53	0.37
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.07	0.16	1.49	0.11	0.06
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.37	0.77	6.50	0.50	0.36
PAH (total of USEPA 16)	CE087	mg/kg	5.50	14.1	215	11.3	5.73
ТРН							
VPH Aromatic (>EC5-EC7)	\$	mg/kg	-	<0.05	-	<0.05	<0.05
VPH Aromatic (>EC7-EC8)	\$	mg/kg	-	<0.05	-	<0.05	<0.05

Lab number			127962-19	127962-20	127962-21	127962-22	127962-23
Sample id			HP08 ES	HP09 ES + 0	HP10 ES	HP11 ES+0	HP12 ES+0
Depth (m)			0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date sampled			26/10/2023	26/10/2023	26/10/2023	26/10/2023	26/10/2023
Test	Method	Units					
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	-	1	ı	<0.5	<0.5
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	-	2	-	<1	<1
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	-	9	ı	<2	<2
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	-	28	ı	<5	<5
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	-	7	ı	<1.5	<1.5
VPH Aliphatic (>C5-C6)	\$	mg/kg	-	<0.05	ı	<0.05	<0.05
VPH Aliphatic (>C6-C8)	\$	mg/kg	-	<0.1	ı	<0.1	<0.1
VPH Aliphatic (>C8-C10)	\$	mg/kg	-	<0.05	ı	<0.05	<0.05
EPH Aliphatic (>C10-C12)	CE250	mg/kg	-	<0.5	ı	<0.5	<0.5
EPH Aliphatic (>C12-C16)	CE250	mg/kg	-	2	-	<0.5	<0.5
EPH Aliphatic (>C16-C35)	CE250	mg/kg	-	7	-	<4.5	<4.5
EPH Aliphatic (>C35-C44)	CE250	mg/kg	-	1	-	<1	<1
РСВ							
PCB Congener 77	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 81	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 105	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 114	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 118	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 123	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 126	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 156	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 157	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 167	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 169	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB Congener 189	CE181	mg/kg	-	<0.006	-	<0.006	-
PCB (total of WHO 12)	CE181	mg/kg	-	<0.061	-	<0.061	-
Subcontracted Analysis							
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	NAD
	•						

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE264	Antimony (total)	Aqua Regia Extraction, ICPOES	Dry		5	mg/kg Sb
CE264	Arsenic (total)	Aqua Regia Extraction, ICPOES	Dry	М	3	mg/kg As
CE264	Barium (total)	Aqua Regia Extraction, ICPOES	Dry	U	4	mg/kg Ba
CE264	Cadmium (total)	Aqua Regia Extraction, ICPOES	Dry	М	2	mg/kg Cd
CE264	Chromium (total)	Aqua Regia Extraction, ICPOES	Dry	U	2	mg/kg Cr
CE263	Chromium (VI)	Discrete Analyser	Dry			mg/kg CrVI
CE146	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE264	Copper (total)	Aqua Regia Extraction, ICPOES	Dry	М	2	mg/kg Cu
CE264	Lead (total)	Aqua Regia Extraction, ICPOES	Dry	U	3	mg/kg Pb
CE264	Mercury (total)	Aqua Regia Extraction, ICPOES	Dry	U	2	mg/kg Hg
CE264	Molybdenum (total)	Aqua Regia Extraction, ICPOES	Dry	U	2	mg/kg Mo
CE264	Nickel (total)	Aqua Regia Extraction, ICPOES	Dry	М	3	mg/kg Ni
CE264	Selenium (total)	Aqua Regia Extraction, ICPOES	Dry	U	3	mg/kg Se
CE264	Vanadium (total)	Aqua Regia Extraction, ICPOES	Dry	U	4	mg/kg V
CE264	Zinc (total)	Aqua Regia Extraction, ICPOES	Dry	М	4	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE062	Sulphate (acid extractable)	HCl extract, analysed by ICP-OES	Dry	М	100	mg/kg SO ₄
CE197	Total Organic Carbon (TOC)	Carbon Analyser	Dry		0.1	% w/w C
CE197	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry		0.1	% w/w
CE087	Naphthalene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	As received		0.34	mg/kg
\$	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	As received		0.05	mg/kg
\$	VPH Aromatic (>EC7-EC8)	Headspace GC-FID	As received		0.05	mg/kg
\$	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	As received		0.05	mg/kg
CE250	EPH Aromatic (>EC10-EC12)	Solvent extraction, GCxGC-FID	As received		0.5	mg/kg
CE250	EPH Aromatic (>EC12-EC16)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aromatic (>EC16-EC21)	Solvent extraction, GCxGC-FID	As received		2	mg/kg
CE250	EPH Aromatic (>EC21-EC35)	Solvent extraction, GCxGC-FID	As received		5	mg/kg

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE250	EPH Aromatic (>EC35-EC44)	Solvent extraction, GCxGC-FID	As received		1.5	mg/kg
\$	VPH Aliphatic (>C5-C6)	Headspace GC-FID	As received		0.05	mg/kg
\$	VPH Aliphatic (>C6-C8)	Headspace GC-FID	As received		0.1	mg/kg
\$	VPH Aliphatic (>C8-C10)	Headspace GC-FID	As received		0.05	mg/kg
CE250	EPH Aliphatic (>C10-C12)	Solvent extraction, GCxGC-FID	As received		0.5	mg/kg
CE250	EPH Aliphatic (>C12-C16)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aliphatic (>C16-C35)	Solvent extraction, GCxGC-FID	As received		4.5	mg/kg
CE250	EPH Aliphatic (>C35-C44)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE181	PCB Congener 77	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 81	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 105	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 114	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 118	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 123	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 126	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 156	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 157	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 167	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 169	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB Congener 189	Solvent extraction, GC-MS	As received		0.006	mg/kg
CE181	PCB (WHO 12)	Solvent extraction, GC-MS	As received		0.072	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
127962-1	WS01 ES+0	0.10	N	-
127962-2	WS01 ES	0.60	N	-
127962-3	WS02 ES	0.30	N	-
127962-4	WS02 ES+0	0.70	N	-
127962-5	WS02 WAC ES	2.00	N	-
127962-6	WS03 ES+0	0.20	N	-
127962-7	WS03 ES	0.50	N	-
127962-8	WS04 ES+0	0.10	N	-
127962-9	WS04 WAC ES	0.40	N	-
127962-10	WS04 ES	0.60	N	-
127962-11	WS05 ES +0	0.20	N	-
127962-12	HP01 ES	0-0.4	N	-
127962-13	HP02 ES	0-0.4	N	-
127962-14	HP03 ES	0-0.4	N	-
127962-15	HP04 ES	0-0.4	N	-
127962-16	HP05 ES	0-0.4	N	-
127962-17	HP06 ES	0-0.4	N	-
127962-18	HP07 ES	0-0.1	N	-
127962-19	HP08 ES	0-0.1	N	-
127962-20	HP09 ES + 0	0-0.1	N	-
127962-21	HP10 ES	0-0.1	N	-
127962-22	HP11 ES+O	0-0.1	N	-
127962-23	HP12 ES+O	0-0.1	N	-

ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Soil/Solid samples will be disposed of 4 weeks from initial receipt unless otherwise agreed.

Waters and leachate samples will be disposed of 2 weeks from report issue unless otherwise agreed.

DEFRA Licence for the introduction and movement within England of prohibited soil for chemical and physical analysis Licence No: 132693/469907-0

For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet.

For soils and solids, analytical results are inclusive of stones, where applicable.

Moisture Content Calculated on a Wet Weight basis

Waste Acceptance Criteria Testing BS EN 12457-Part 3, 2 Stage Process

Sample Details Test Values

Contract Name	Hillside, Cardiff		Mass of Raw Test Portion (MW) kg	0.202
Lab Number	127962-5		Mass of Dried Test Portion (MD) kg	0.175
Sample ID	WS02 WAC ES	2.00m	Moisture Content Ratio (MC) %	15.51
Date Sampled	26 October 2023		Dry Matter Content Ratio (DR) %	86.57
Date Received	31 October 2023		Leachant Volume (1) (L2) Litre	0.323
Particle Size (<4mm)	-		Leachant Volume (2) (L8) Litre	1.400
Method of size reduction	N/A		Eluate Volume (1) (VE1) Litre	0.225
Non-crushable matter	N/A		Eluate Volume (2) (VE2) Litre	1.180

Eluate Analysis	Conc ir	ı Eluate	Amount	Leached	Council D	ecision 200	03/33/EC
Liquid : Waste Ratio	2:1	8:1	†			ies mg/kg a	
pH (units) ²	8.5	9.6			Inert	Non-reactive	Hazardous
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste
Conductivity (µS/cm) ²	2000	333	mg/kg	mg/kg		Waste	
Antimony (μg/l Sb)	9.90	6.45	0.020	0.069	0.06	0.7	5
Arsenic (µg/l As) ²	9.81	12.62	0.020	0.123	0.5	2	25
Barium (µg/l Ba) ²	46.8	7.7	0.094	0.128	20	100	300
Cadmium (µg/l Cd) ²	<0.1	<0.1	<0.0002	<0.001	0.04	1	5
Chromium (µg/l Cr) ²	2.6	2.5	0.005	0.025	0.5	10	70
Copper (µg/l Cu) ²	9.4	19.3	0.019	0.180	2	50	100
Lead (µg/l Pb) ²	1.1	1.0	0.002	0.010	0.5	10	50
Mercury (μg/l Hg)	<0.05	<0.05	<0.0001	<0.0005	0.01	0.2	2
Molybdenum (µg/l Mo)	56.8	12.7	0.114	0.184	0.5	10	30
Nickel (µg/l Ni) ²	2.7	1.9	0.005	0.020	0.4	10	40
Selenium (µg/l Se) ²	3.51	3.76	0.007	0.037	0.1	0.5	7
Zinc (µg/l Zn) ²	<3.2	<3.2	<0.006	<0.03	4	50	200
Chloride (mg/l Cl) ²	42	8.6	83	129	800	15000	25000
Fluoride (mg/l F) ²	1.0	0.1	2.1	2.6	10	150	500
Sulphate (mg/l SO ₄) ²	1339	1201	2678	12191	1000	20000	50000
Total Dissolved Solids (mg/l TDS)	1520	253	3040	4160	4000	60000	100000
Phenol Index (µg/l PhOH)	<10	<10	<0.02	<0.1	1		
Dissolved Organic Carbon (mg/l C)	24	17	49	182	500	800	1000

Waste Analysis	Units	Result			
Total Organic Carbon	% w/w	2.5	3%	5%	6%
Loss on Ignition	% w/w	5.2			10%
BTEX	mg/kg	<0.06	6		
PCBs (7 congeners)	mg/kg	<0.045	1		
Mineral Oil (C10 - C40)	mg/kg	134	500		
PAH (total)	mg/kg	6.26	100		
pH ¹	pH units	7.5		>6	
Acid Neutralisation Capacity (pH4)	mol/kg	6.30		To be evaluated	
Acid Neutralisation Capacity (pH7)	mol/kg	0.12		To be evaluated	

¹ Results are accredited to MCERTS if matrix confirmed as soil

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user.

Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Interpretation/assesment is outside the scope of the laboratory's UKAS accreditation.

Moisture Content Calculated on Wet Weight Basis

Comments

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB
Tel 01207 528578 Email customerservices@chemtech-env.co.uk
Vat Reg No. 772 5703 18 Registered in England number 4284013

CE709(27) issued 11 Sep 2023

 $^{^{\}mathrm{2}}$ Results in leachate are accredited to ISO17025

Waste Acceptance Criteria Testing BS EN 12457-Part 3, 2 Stage Process

Sample Details Test Values

Contract Name	Hillside, Cardiff	Mass of Raw Test Portion (MW) kg	0.210
Lab Number	127962-9	Mass of Dried Test Portion (MD) kg	0.175
Sample ID	WS04 WAC ES 0.40m	Moisture Content Ratio (MC) %	19.79
Date Sampled	26 October 2023	Dry Matter Content Ratio (DR) %	83.48
Date Received	31 October 2023	Leachant Volume (1) (L2) Litre	0.315
Particle Size (<4mm)	-	Leachant Volume (2) (L8) Litre	1.400
Method of size reduction	N/A	Eluate Volume (1) (VE1) Litre	0.230
Non-crushable matter	N/A	Eluate Volume (2) (VE2) Litre	1.280

Eluate Analysis	Conc ir	ı Eluate	Amount	Leached	Council Decision 2003/33/EC			
Liquid: Waste Ratio	2:1	8:1			Limit Values mg/kg at L:S 10:1			
pH (units) ²	7.6	9.2			Inert	Non-reactive	Hazardous	
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste	
Conductivity (µS/cm) ²	2340	2070	mg/kg	mg/kg		Waste		
Antimony (μg/l Sb)	9.80	4.83	0.020	0.055	0.06	0.7	5	
Arsenic (µg/l As) ²	5.12	4.57	0.010	0.046	0.5	2	25	
Barium (µg/l Ba) ²	111.9	43.7	0.224	0.527	20	100	300	
Cadmium (µg/l Cd) ²	<0.1	<0.1	<0.0002	<0.001	0.04	1	5	
Chromium (µg/l Cr) ²	<0.5	<0.5	< 0.001	<0.005	0.5	10	70	
Copper (µg/l Cu) ²	3.1	4.1	0.006	0.040	2	50	100	
Lead (µg/I Pb) ²	<0.6	<0.6	<0.0012	<0.006	0.5	10	50	
Mercury (µg/l Hg)	<0.05	<0.05	<0.0001	<0.0005	0.01	0.2	2	
Molybdenum (µg/l Mo)	44.5	6.9	0.089	0.118	0.5	10	30	
Nickel (µg/l Ni) ²	3.5	3.5	0.007	0.035	0.4	10	40	
Selenium (µg/l Se) ²	1.46	1.29	0.003	0.013	0.1	0.5	7	
Zinc (µg/l Zn) ²	<3.2	<3.2	<0.006	<0.03	4	50	200	
Chloride (mg/l Cl) ²	24	<0.4	48	<34.9	800	15000	25000	
Fluoride (mg/l F) ²	0.3	<0.07	0.6	<1.0	10	150	500	
Sulphate (mg/l SO ₄) ²	1381	1233	2762	12524	1000	20000	50000	
Total Dissolved Solids (mg/l TDS)	1778	1573	3557	16002	4000	60000	100000	
Phenol Index (µg/l PhOH)	<10	<10	<0.02	<0.1	1			
Dissolved Organic Carbon (mg/I C)	32	14	64	165	500	800	1000	

Waste Analysis	Units	Result			
Total Organic Carbon	% w/w	2.5	3%	5%	6%
Loss on Ignition	% w/w	6.2			10%
BTEX	mg/kg	<0.06	6		
PCBs (7 congeners)	mg/kg	<0.045	1		
Mineral Oil (C10 - C40)	mg/kg	145	500		
PAH (total)	mg/kg	6.75	100		
pH ¹	pH units	7.6		>6	
Acid Neutralisation Capacity (pH4)	mol/kg	4.58		To be e	valuated
Acid Neutralisation Capacity (pH7)	mol/kg	0.38		To be ev	/aluated

¹ Results are accredited to MCERTS if matrix confirmed as soil

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user.

Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Interpretation/assesment is outside the scope of the laboratory's UKAS accreditation.

Moisture Content Calculated on Wet Weight Basis

Comments

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB
Tel 01207 528578 Email customerservices@chemtech-env.co.uk
Vat Reg No. 772 5703 18 Registered in England number 4284013

 $^{^{\}mathrm{2}}$ Results in leachate are accredited to ISO17025

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE001	Moisture Content	Gravimetry, reported on Wet Weight basis	As received		0.1	% w/w
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE083	Acid Neutralisation Capacity	Titration	Dry		0.01	mol/kg
CE144	Ammoniacal Nitrogen as N	KCI extraction, Colorimetry	As received		1	mg/kg N
CE007	Electrical conductivity	Conductivity Meter	As received	U	10	μS/cm
CE197	Total Organic Carbon (TOC)	Carbon Analyser	Dry		0.1	% w/w C
CE006	Loss On Ignition at 440°C	Based on BS 1377, Gravimetry	Dry	U	0.1	% w/w
CE087	PAH (total of 17)	Solvent extraction, GC-MS	As received		0.36	mg/kg
CE192	BTEX (total)	Headspace GC-FID	As received		0.06	mg/kg
CE194	Mineral Oil (>C10-C40) silica clean up	Solvent extraction, clean-up, GC-FID	As received		16	mg/kg
CE137	PCB (total of ICES 7)	Solvent extraction, GC-MS	As received		0.045	mg/kg
CE264	Antimony (dissolved)	ICP-MS			0.8	μg/l Sb
CE264	Arsenic (dissolved)	ICP-MS		U	0.1	μg/l As
CE264	Barium (dissolved)	ICP-MS		U	0.9	μg/l Ba
CE264	Cadmium (dissolved)	ICP-MS		U	0.1	μg/l Cd
CE264	Chromium (dissolved)	ICP-MS		U	0.5	μg/l Cr
CE264	Copper (dissolved)	ICP-MS		U	0.6	μg/l Cu
CE264	Lead (dissolved)	ICP-MS		U	0.6	μg/l Pb
CE264	Mercury (dissolved)	ICP-MS			0.05	μg/l Hg
CE264	Molybdenum (dissolved)	ICP-MS			0.9	μg/l Mo
CE264	Nickel (dissolved)	ICP-MS		U	0.4	μg/l Ni
CE264	Selenium (dissolved)	ICP-MS		U	1.1	μg/l Se
CE264	Zinc (dissolved)	ICP-MS		U	3	μg/l Zn
CE213	рН	Based on BS 1377, pH Meter		U	-	units
CE214	Electrical conductivity	Conductivity Meter		U	10	μS/cm
CE049	Chloride	Dsicerete Analyser		U	0.4	mg/l Cl
CE049	Fluoride	Dsicerete Analyser		U	0.1	mg/l F
CE049	Sulphate	Dsicerete Analyser		U	0.3	mg/l SO4
CE148	Phenols (total)	Continuous Flow Colorimetry			10	μg/l PhOH
CE039	Total dissolved solids	TDS meter			10	mg/I TDS
CE247	Total Organic Carbon	Filtration, TOC analyser			5	mg/l C

Statement of Conformity

Statement of Conformity

Where Chemtech reports a statement of conformity to a specification, the decision rules applied are derived from the Ilac document ILAC G8:09/2019.

Acceptance limits (AL), applied are derived from the tolerance limits (TL) by you the client or applicable standard (e.g. 2003.33.EC Council Decision, BS3882, BS8601)

Agreed and reported Decision Rule:

"PASS" if the result < TL, and the bias / precision values for the process meet the targets defined within the methodology and/or applied accreditation.

Reported Decisions:

Result < TL for determinands: PASS Result > TL for determinands: FAIL

Definitions Used:

Acceptance limit (AL) Specified upper or lower bounds of permissible measured quantity values.

Tolerance limit (TL) Specified upper or lower bound of permissible values of a property.

Accreditation of WAC/BS3882/BS8601

Accreditation in Soil to MCERTS is only applicable for specific matrix types identified as soil (Sand/Loam/Clay) during the sample assessment

If the sample is classified as not soil, not accreditation is conveyed

APPENDIX E

Rational and full list of General Assessment Criteria used by Dice Environmental.

Copyright Land Quality Management ltd reproduced with permission; Publication number S4UL3829. All rights reserved.

Determinand	Allotment	RNHP	R _{AC} HP	Commercial/ Industrial	POSresi	POSpark
Metals Arsenic (Inorganic)* ***	1 20	37	C CAN	040	26	1 220
Boryllum * 3.0.4	43	1.00	40	640		170
Boron AD 1	35	1.7	1.7	12		63
	45	200	11000	240000		48000
Cadmium (pH6-8) * * * * *	1.9	11.	85	190		560
Chromium (trivalent) * 5.5.5	18000	910	910	8600		33000
Chromium (hecsavalent) ****	18	6	6'	33'	7.7	220
Copper ** *	520	2400	7100	88000	12000	44000
Mercury (elemental)	21	1.2	1.2	58" (25.9)	15	30" (25.5)
Mercury (inorganic) ** 5.5	19	40	56	1100	120	240
Methylmercury	8	11	15	320	40	68
Nickel * 3.7	230	180	180"	960,	230"	3400°
Selenium ***	88	250	430	12000		1800
Venedium * 0.0	91	410	1200	9000		5000
Zinc " * "	620	3700	40000	730000		170000
BTEX Compounds (SOM 1%/2		0100	40000	100000	01000	170000
Benzene * htm	0.017/0.034/ 0.076	0.087/0.17/	0.38/0.7/1.4	27/47/90	72/72/73	90/100/110
230220			800""(869)	58000**(869)/	NAME OF TAXABLE PARTY.	87000""(868)
Toluens * faller	227517420	130 / 290 /	(1800/3800	110000°** 1920V	580007	95000**(1920)
		1100000000	I American	180000**(4360)		100000**(4380
Carlo and the control of the control	16/39/91	47.7 1107	83 / 190 / 440	5700*** (518) /		17000** (518)
Ethylbenzione * later		260		13000*** (1220) /	100000000000000000000000000000000000000	22000**(1220)
	VICTOR 1000	100000000000000000000000000000000000000	MINISTER STATE OF THE STATE OF	27000 (2840)	25000	27000** (2840
and the state of t	28 / 87 / 180	60 / 140 /	88/210/480	6600" (478)/	410007	17000" (478)
O - Xylene * 4 + 6 *		330		15000° (1120) /	420007	24000 ^w (1120)
7-85				33000° (2620)	155 120 40 230' 1100 2000 51000 72 / 72 / 73 58000 / 58000 24000 / 25000 24000 / 25000 41000 / 42000	3300010 (2620)
	31 / 74 / 170	59 / 140 /	82 / 190 / 450	6200*** (625) /	410007	17000** (825)
M - Xylane *** ****		320		14000/** (1470) /	420007	24000/**(1470)
-				31000 ^{NO} (3450)	43000	32000 (3490
	297697480	56 / 130 /	79 / 180 / 430	5900" (576)/		17000" (576)
P - Xylene - to the s		310		14000" (1350)/	C 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23000° (1350)
				30000° (3170)		23000 rd (1350) 31000 rd (3170
Polycyclic Aromatic Hydrocart	none (SOM 1%) 2.69	S/ 6%) * * * * *	-			70.70
· egogono ra omaco r goro con c	34 / 85 / 200	210)	3000 (57.0)V	94000° (57.0)	Listing / Isling	29000/
Acenaphthene	047601200	510/	4700 (141)	97000"1141V		30000
- resimplification		1100	8000**(338)	100000	110000	30000
	28/69/190	170/420/	2900°(86.1)	83000 ⁸⁰ (86.1)	45000 / 45000	290007
W0000000000000	287697190	2	2900 186.1V			T 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acenaphthylene		920	4600° (212) 6000° (506)	97000** (212)/	7 10000	300007
Al. es	200 (200)	7/07/7/2007	6000 (500)	100000	74000 (74000	30000
TO A WAR LEAVE AND A STATE OF THE A	380 / 960 /	2400 / 6400 /	31000 (1.17	G20000/		1500007
Anthracene	2200	11000	/35000/	640000/	7.74000	1500007
			37000	540000		150000
Benziajanihracene	2.9 / 6.5 / 13	7.2 / 11 / 13	11/14/15	170 / 170 / 180		49/56/62
Benzo(a)pyreno (Bap)	0.97 / 2.0 (3.5	22/27/30	3.2/3.2/3.2	35/35/36	5.7/ 5.7/5.7	117 127 13
Benzo(b)fluoranthene	0.99 / 2.1 / 3.9	2.6 (3.3 / 3.7	3.9 / 4.0 / 4.0	44 / 44 / 45	7.1/7.2/7.2	137 157 16
Managar Balanca	290 / 470 /	320 / 340 /	350/350 / 360	3900(4000) 4000	640/640/640	1400/1500/
Benzo(g,n.) perylene	640	350			***************************************	1600
Benzo(k)fluorantherie	37/75/130	77 / 93 / 100	110/110/	1200/ 1200/1200	190/190/190	370 / 410 / 44
Charges	4.1/9.4/19	15 / 22 / 27	30/31/32	350 / 350 / 350	67/67/67	93 / 110 / 120
Chrysene						
Dibenzo(sh)anthrapane	0.14 / 0.27 /	0.24/0.26/	0.31/0.32/	35/36/36	0.57/0.57/0.58	1.171.371.0
	0.43	0.3	0.32	110,000,000,000	1000	The second second
Fluorantiene	52 / 130 / 290	280 / 560 /	1500/1600/	23000/23000/		6300 / 6300
A CONTRACTOR OF THE PARTY OF TH	- Table 100 100 100 100 100 100 100 100 100 10	690	1800	23000		8400
Fluorene	27/67/100	170 / 400 / 960	2900° (30.9) /3800° (76.5)	83000" (30.9) / 85000 / 71000	THE CONTRACTOR OF THE CONTRACT	20000 / 20000
The same and the s	00000000000	20 July 3 mg	14500 ^{m3} (183)	- DEDRENANTES	- 10 Sept 18 Sept 1	100 m
Indeno(1,2,3-od)pyrene	9.57.217.39	27/36/41	45746746	.500 / 510 / 510	02/02/02	150 / 170 / 10
MS1870333435 00 10 /0	4.1/10/24	23/56/13	2.3/56/13	190°2 (78.4) / 480°2		- 1200° (76.4)
Nachthalene ^e	7305 Land 197	2011200000	200000000000000000000000000000000000000	(183) / 1100***		1900° (183)
				(432)		3000
	15/38/90	96 / 220 /	1300 136.0V	22000/22000/		6200 / 6200
Phenanthrene	1 250 000000	440	1500/1500	23000		5300
Pyrene	110/270/	820 / 1200 /	3700/3800/	54000 / 54000 /	7400 (7400)	15000 / 15000
	620	2000	3800	54000	7400	15000
Coal Ter (Bap sa surrogate	0.32 / 0.67 /	0.7970.987	1.2/1.2/12	15 / 15 / 15	2.2/2.2/2.2	44/47/48
marker)	1,2	1.1	Therefore and	TIROMSONYSA	-1-10/04/10/10/10/10	T - OF COTTON COSTS
Explosives * 14.1.4	- Standarda	Same of the same	(Alexanderense)	Sagrence Sagren	Tuestra presidenti	Entre mercunar
2, 4, 6 Trinitrotoluene	0.24 / 0.68 / 1,40	1.6/3.7/8.0	65 / 66 / 66	1000/1000/1000	130/130 / 130	250 / 270 / 27
and the second second	17/38/85	120 / 250 /	130003	210000 / 210000 /	26000/26000/	49000 ³⁰ (18.7)
RDX (Royal Demoition Explosive C ₂ H ₆ N ₂ O ₆)	17 1 20 1 83	540	130007	210000	27000	51000 / 5300
Explasive (c)In(I4(O()	PHILIP TO A 24 TA COMPANY	Samuel Commence	13000	report of the beauty	and the state of t	10 July 10 July 18
COLOR STREET, COLOR STREET, CO.	0.85/1.9/3.9	5.7 / 13 / 26	6700 / 6700 /	110000 / 110000 /	13000 / 13000	23000°° (0.30
HMX (High Melting Explosive	0.850800010000	27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6700	110000	/ 13000	/23000°as (0.3
C ₂ H ₈ N ₆ O ₉)			200		200000000000000000000000000000000000000	/24000° (0.4

Determinand	Allotment	R _M HP	RegHP	Commercial/ Industrial	POSresi	POSpark
Petroleum Hydrocarbons (SOM:			L contract contract	I make all marks to	Language	- was a series of the series of
Alphano EC 5-6	730 / 1700 / 3900	42/79/160	42/78/100	3200° (304) / 5900° (558) / 12000° (1150)	570000"(304 5900007 600000	95000""(304) / 130000""(558) 180000""(1150
Aliphatic EC >6-8	2300 / 5500 / 13000	100 / 230 / 530	100 / 230 / 530	7900" (144) / 17000" (322) / 40000" (738)	600000 / 610000 / 620000	150000" (144) 220000" (322) 320000" (738)
Alphatic EC =8-10	320 (770) 1700	27/65/150	27 / 66 / 150	2000 ⁸⁸ (78) / 4800 ⁹⁹ (190) / 11000 ⁹⁹ (451)	13000 / 13000 / 13000	14000 ⁹⁰ (78) / 18000 ⁹⁰ (190) / 21000 ⁹⁰ (451)
Aliphatic EC ≥10.12	2200 / 4400 / 7300	130v ^{ac} (48) / 330 ^{ac} (118) / 760 ^{ac} (283)	130v** (48) / 330*** (118) / 770*** (283)	9700 ⁹⁹ (48) / 23000 ⁹⁰ (118) / 47000 ⁹⁰ (283)	13000 / 13000 / 13000	21000° (48) / 23000° (118) 24000° (283)
Aliphatic EC ≥12.16	11000 / 13000 / 13000	1100 ²⁰ (24) / 2400 ²⁰ (59) / 4300 ²⁰ (142)	1100 ¹⁰ (24) / 2400 ¹⁰ (59) / 4400 ¹⁰ (142)	50000 ¹⁰ (24) / 82000 ¹⁰ (59) / 90000 ¹⁰ (142)	13000 / 13000 / 13000	25000 (28) / 25000 (59) / 26000 (142)
Aliphatic EC >16.35 °	250000 / 270000 /	65000°(8.48 92000° (21)	92000 ¹⁰ (8.48 92000 ¹⁰ (21)	1600000 / 1700000 /	250000 / 250000 /	490000 / 490000 /
Aliphade EC >35-44 °	270000 260000 / 270000 /	110000 65000°3(8.48 92000°0°(21)	110000 65000 ¹⁰ (8.48 92000 ¹⁰ (21)	1800000 1800000 / 1700000 /	250000 / 250000 / 250000 /	490000 / 450000 / 480000 /
Aromatic EC 5-7 (benzone)	270000 13 / 27 / 57	/ 110000 70 / 140 / 300	110000 370 / 890 / 1400	1800000 260000 ⁶⁸ (1220) / 46000 ⁸⁸ (2260) /	250000 56000 / 56000 / 56000	490000 76000 ⁸⁰ (1220) /84000 ⁸⁰ (2260)
Aromatic EC >7-8 (toluenc)	22 / 51 / 120	130 / 290 / 660	860 / 1800 / 3000	86000 ³⁶ (4710) 56000 ³⁶ (860) 110000 ³⁸ (1920)	56000756000 756000	92000 ⁸⁶ (4710) 87000 ⁸⁶ (869) / 95000 ⁸⁶ (1920)
Aromatic EC >8-10	8.6/21/51	34/83/190	47 / 110 / 270	180000 ^{ne} (4360) 3500 ^{ne} (613) / 8100 ^{ne} (1500) /	5000 / 5000 / 5000	7200°43(4350 7200°45(813) / 8500°45 (1500) /
Assemble EC >10-12	13/31/74	74 / 180 / . 380	250 / 590 / 1200	17000 ⁶⁶ (3680) 18000 ⁷⁶ (384) / 28000 ⁷⁶ (889) /	5000 / 5000 / 5000	9300°° (3580) 9200°° (384) / 97000°° (899) /
Acemaic EC >12-16	23 / 57 / 130	140 / 330 / 880	1800 / 2300 ^{m²} (418) / 2500	34000** (2150) 38000** (189) / 37000 / 38000	5100 / 5100 / 5000	10000 10000 / 10000 10000
Aromatic EC >18-21 "	48/110/280	260 / 540 / 930	1900 / 1900 / 1900	28000 / 28000 / 28000	3800 / 3800 / 3800	7600 / 7700 / 7800
Aromato EC >21 05"	370 / 820 / 1600	1100 / 1500 / 1700	1900 / 1900 / 1900	28000 / 28000 / 28000	3800 / 3800 / 3800	7800 / 7500 / 7900
Aromatic EC >36-44 "	370 / 820 / 1600	1100 / 1500 / 1700	1900 / 1900 / 1900	28000 / 28000 / 28000	3800 / 3800 / 3800	7800 / 7800 / 7900
Aliphatic+Aromatic EC >44-70 ²	1200 / 2100 / 3000	1900 / 1800 / 1900	1900 / 1900 / 1900	28000 / 28000 / 28000	3800 / 3800 / 3800	7800 / 7800 / 7900
Chlorosikanes & Chlorosikenes				3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1920001215-57	
1.2-Orthlorcethane	0.00467 0.008370.016	0.00717	0.092 / 0.013 / 0.023	0.67 / 0.97 / 1.7	29 / 29 / 29	21 / 24 / 28
1,1,1 Trichloroethane (TCA)	48 / 110 / 240	8.8718739	9.0/18/40	960 / 1300 / 3000	140000 / 140000 / 140000	57000 ^{m0} (1425) 76000 ^{m0} (2916) 100000 ^{m1} (6390
1,1,1,2 Tetrachloroethane	0.79/1.9/4.4	1.2/2.8/6.4	1.5/3.5/8.2	110 / 250 / 550	1400 / 1400 / 1400	1600 / 1800 / 2100
1,1,2,2 Tetrachloroethane	0.41/0.89/ 2.0	18/34/75	39/80/17	270 / 550 / 1100	1400 / 1400 / 1400	1800 / 2100 / 2300
Tetrachiorosthere (PCE)	0.65/1.5/3,6	0.1870.397	0.187047	19742795	1400 / 1400 / 1400	810**(424)/110 ***(951)/1500
Tetrachioromethane (Carbon Tetrachionde)	0.45/1.0/2.4	0.026 / 0.056 / 0.13	0.026 / 0.058 / 0.13	2.978.3714	950 / 920 / 950	190 / 270 / 400
Trichloroethene (TCE)	0.041 / 0.091 / 0.21	0.016 / 0.034 / 0.075	0.017 / 0.036 / 0.000	1.2 / 2.5 / 5.7	120 / 120 /	70 / 91 / 120
Trichloromethane (Chieroform)	0.42 / 0.83 / 1.7	0.9171.77 3.4	1.272.174.2	99 / 170 / 350	2500 / 2500 / 2500	2600 / 2800 / 3100
Chieroethene (Vinyl Chieride)	0.00055/ 0.001/ 0.0018	0.000847 0.00087/ 0.0014	0.00077 / 0.001 / 0.0015	0.059 / 0.077 /	3.5/3.5/3.5	48/50/54
Phenol & Chlorophenola ****		L		1 12 13		100
Priend	23 /42 / 83	120 / 200/380	440/690 /1200	440° (26000) / 690° (30000) / 1300° (34000)	440" (10000) 690" (10000) 1300" (10000)	440° (7600) / 690° (8300) / 1300° (83000)
Chiorophenois (excluding PCP)	0.13" / 0.3 / 0.7	0.87°/2.07 4.5	94 / 160 / 210	3500 / 4000 / 4300	620/ 620 / 620	1100/1100/
Pontachiorophenol (PCP)	0.03 / 0.08 / 0.19	0.22/ 0.52 / 1.2	27 ^{rep} (16.4) / 29 / 31	400 / 400 / 400	80 / 80 / 80	110 / 120 / 120
Other "Inter						
Carbon Disulphide	4.0710723	0.14/0.29	0.14/0.29 /0.62	31/22/47	/ 12000	1300 / 1900 / 2700

Determinand	Allotment	RWHP	R _{AO} HP	Commercial/ Industrial	POSresi	POSpark.
Pesticides (SOM 1%/ 2.6%/ 6%)	E LD	Very superpart survival	Savenner received	S. Alexandrian	The State of Language Co.	- was assessed
Aldrin	32/81/98	57/68/71	73174175	170 / 170 / 170	18 (18 / 18	30/31/31
Atrazine	0.5/1.2/2.7	3.37.6/17.4	610/ 620 / 620	9300 / 8400 / 9400	1200/1200	2300 / 2400 / 2400
Dichlorvos	0.0049/0.010/	0.032/0.066/ 0.14	84/85/66	140 / 140 / 140	16 / 16 / 16	28/28/27
Diakirin	0.17/0.41/0.98	0.97/2/3.5	7.017.377.4	170 / 170 / 170	18 / 18 / 18	30/30/31
Alptsa - Endosulfen	1.2/2.9/88	7.47.18741	180 (0.003)/ 280 (0.007)/ 410 (0.016)	5600°° (0.003) / 7400°° (0.007) / 8400°° (0.016)	1200 / 1200 / 1200	2400 / 2400 / 2500
Bete - Endosulfan	11/27/84	70/17/	190°*(0.0007) /320°*(0.0002) /440°*(0.0004)	6300°°(0.0007) /7800°°(0.0002) / 8700	1200 / 1200 / 1200	2400 / 2400 / 2500
Alpha-Hexachlorocyclohexane	0.035/0.007/	0.23/0.55 /	5.9/9.2/11	170 / 150 / 180	24 / 24 / 24	47 / 49 / 49
Beta - Hexachlorocyclohexane	0.013/0.032/	0.085 / 0.2/	3.7/3.8/3.8	65/65/65	8.1/8.1/8.1	15/15/16
Gamma Hexachlorocyclohexane	0.0092 / 0.023 / 0.054	0.06/0.14/	2.9/3.3/3.6	67 / 69 / 70	82/82/82	14/15/15
Chlorobenzenes * 5, 5, 5	J	0 776		× -		
Chiorotenzene	5.9714732	0.487 1.07 2.4	0.46 / 1.0 /	58 / 130 / 290	/14000	1300"(675) 2000"(1520) 2900
1,2-dichiembenzene (1,2-DCB)	94/230/540	237557130	24/5//130	2000" (5/1) / -4800" (1370) / -11000" (3240)	90000795000 798000	29000° (571) / 38000° (1370) /51000° (3240
1,3-dichlorobenzene (1,3-DCB)	0.25/0.6/15	0.471.0723	0.44/1.172.5	30 / 73 / 170	300/300 / 300	390 / 440 / 470
1.4-dichlorobenzone (1.4-DGB)	15/737/788	61° / 150° /350°	619/1503/350°	4400 ⁽⁸⁰⁴⁾ (224) / 10000 ⁽⁸⁰⁴⁾ (540) / 25000 ⁽⁸⁰⁴⁾ (1290)	17000// 17000// 17000	36000 ⁽⁶⁰⁾ (224) 36000 ⁽⁶⁰⁾ (640) 36000 ⁽⁶⁰⁾ (1280
1,2,3-Trishiorobenzone	4.7/12/28	1.5/3.6/8.6	1,5 / 3.7 / 8.8	102 / 250 / 500	1800 / 1800 / 1800	770 ⁴⁵ (134) / 1100 ⁴⁶ (330) / 1600 ⁴⁷ (789)
1,2,4- Trichicrobenzene	65 / 140 / 320	2.0 / 9.4 / 15	2.67,6.4 (15	220 / 530 / 1300	15000 / 17000 / 19000	1700 ⁽⁴⁰⁾ (318) / 2600 ⁽⁴⁰⁾ (786) / 4000 ⁽⁴¹⁾ (1980)
1,3,5-Trichlembenzene	4.7/12/28	0.53/0.81/ 1.9	0.33 (0.81 / 1.9	23/55/130	1700 / 1700 / 1800	380°° (38.7) / 580°° (90.8) / 860°° (217)
1,2,3,4-Tetrachlorobenzane	44/11/28	15/38/78	247587120	1700° (122) / 3080° (304) / 4400° (728)	830 / 830 / 830	1500°° (122) / 1600 / 1600
1,2,3,5- Tetrachlorobenzene	0.38 (0.90 / 2.2	0.667 1.67 3.7	0.75 / 1.9 / 4.3	49 ^{cla} (39.4) / 120 ^{cla} (98.1) / 240 ^{cla} (235)	78 / 79 / 79	110 ⁴⁰ (30) / 120 / 130
1,2,4,5- Tetrachkorobenzene	0.06 / 0.16 / 0.37	0.33 / 0.77 / 1.6	0.73 / 1.7 / 3.5	42 th (19.7) / 72 th (49.1) / 96	13 / 13 / 13	25/28/28
Pentechiorobenzere (P _C CB)	1.273.177.0	5.6 (12 / 22	19730738	840**(43.0) / 770*** (107) / 830	1007 1007	190 / 190 / 190
Hesachlorobenzene (HCB)	0.47 / 1.17 2.5	1.8°° (0.20)/ 3.3°° (0.5)/	4.1°* (0.20) / 5.7°** (0.5) / 8.7°** (1.2)	110 ^{mh} (0.20) 7 120 / 120	16 / 16 / 16	30/30/30

```
Residential without homegrown produce

Residential without homegrown produce

POSitions public open space for recreational issue part decidated sports a ticke.

POSitions public open space for recreational issue part open compounds with yeary according to SOM*

Sold Organic Market — the SAUL for divingent and decidated sports a ticke.

SOM Sold Organic Market — the SAUL for divingent and open compounds with yeary according to SOM*

Based on product in the defined in SRS (Stindential Sports, 2000) and display according to SOM*

Pageon in the comparison of the later of sold comment in Sports, 2000) and display and open sports in SOM*

Pageon in the comparison of the later of being no larger from the contribution from the effect of ADE.

Based on comparison of inhabition appears with inhabition from the effect of ADE.

Based on obtained offer to comparing inhabition appears with inhabition in Sonty

Based on obtained offer to comparing inhabition exposure with inhabition D only

Based on comparison of call and demine opposure with inhabition TDI

Based on comparison of call demand and inhabition exposure with inhabition TDI

Based on comparison of call demand and inhabition exposure with inhabition TDI

Based on comparison of call demand and inhabition exposure with inhabition TDI

Based on comparison of call demand and inhabition exposure with inhabition TDI

Based on comparison of an exposure of the inhabition of the special option of the special of the special option of t
```

Copyright Land Quality Management ltd reproduced with permission; Publication number S4UL3829. All rights reserved.

Category 4 Screening Levels (C4SL) – Table taken from SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document (Department for Environmental, Food and Rural Affairs December 2014).

2 212 - 115	Residential (with home- grown produce)	Residential (without home-grown produce)	Allotments	Commercial	Public Open Space 1	Public Open Space 2
Arsenic	37	40	49	640	79	170
Benzene	0.87	3.3	0.18	98	140	230
Benzo(a)pyrene	5.0	5.3	5.7	77	10	21
Cadmium	22	150	3.9	410	220	880
Chromium VI	21	21	170	49	21	250
Lead	200	310	80	2300	630	1300

All in mg/kg

Public Open Space 1 - for grassed area adjacent to residential housing

Public Open Space 2 - Park Type Public Open Space Scenario