TECHNICAL NOTE

Project Title: Land at Model Farm, Rhoose, PBPC
Report Reference: JNY9624-06A
Date:
06 February 2020

Introduction

1.1 This Technical Note (TN) has been prepared in relation to a planning application for employment uses at Land at Model Farm, Rhoose PBPC. It has been prepared following the receipt of a review document (Mott McDonald Report Ref: 389508AD) of the RPS Transport Assessment (RPS Report Ref: JNY9624-04B) and a subsequent meeting between The Vale of Glamorgan Council (TVoGC), a representative from Mott McDonald on behalf of TVoGC (from hereon in, also referred to as TVoGC), Legal \& General (Strategic Land) Ltd and RPS on 21 ${ }^{\text {st }}$ October 2019. The Review is attached at Appendix A.
1.2 During the meeting on $21^{\text {st }}$ October 2019, there was also discussions on car parking and the estimated build programme. For completeness, both of these items are considered within this TN.
1.3 For the purpose of this TN the Transport Assessment will be referred to as 'the TA', with Mott McDonald's review referred to as 'the Review'. The Review sets out a commentary on the TA with some items raised on technical matters for further submission. The format of this TN consists of the item raised in the Review and/or meeting on $21^{\text {st }}$ October 2019, followed by a response enclosing further information where necessary.

Items Raised and Reponses

Item 1 - Personal Injury Accident Data

1.4 The Review sets out that the TA does not adequately show that there are no highway safety issues in the vicinity of the site. The comments refer to the data protection issues attached to the data received by RPS and the details that can be disclosed in the TA.
1.5 The Review suggests that TVoGC review the accident information that they hold and provide a review of the road safety.

Response to Item 1

1.6 RPS are not able to produce more detailed information and the information submitted within the TA is all that Welsh Government permit due to data protection, as recognised in the Review.

Indeed, RPS had had to destroy the data to conform with the conditions of issue of the data from Welsh Government.
1.7 The Review recommends that TVoGC should review the injury accident data themselves and provide their own view.
1.8 As set out in the TA, RPS reviewed the injury accident data and concluded that there were no common contributory factors that highlight any deficiencies in the highway network.

Item 2 - Modal Share Application

1.9 The Review states, in reference to the modal share proposals, that:
"It is not clear whether the adjusted trip reduction has only been applied to commuting trips and not operational trips, which are not likely to be affected by a Travel Plan. This should be clarified."

Response to Item 2

RPS confirm that the adjusted trip reduction has only been applied to commuting trips.

Item 3 - Car Parking Requirements

1.11 Building upon car parking standards as set out within the Review, TVoGC sought an estimate of the potential number of car parking spaces during the meeting between TVoGC, Legal \& General (Strategic Land) Ltd and RPS on $21^{\text {st }}$ October 2019. TVoGC suggested that an initial estimate of car parking requirements for the development would be useful to provide a level of qualification to the statements within the TA that car parking would be provided based upon car parking standards.

Response to Item 3

1.12 Car parking standards (maximum standards) are set out in The Vale of Glamorgan Local Development Plan 2011 to 2026 Supplementary Planning Guidance 'Parking Standards', adopted in 2015. As recognised in the Review, car parking standards are based upon the location of development sites with five zones.
1.13 As recognised in the Review, the site is currently in zone 6 'deep rural', however, with the wider developments and accessibility improvements coming forward, it is expected that the area within which the site is located would be reclassified.
1.14 Tables 1 and 2 therefore set out the car parking standards for zones five and six (current) and for zones three and four (potential future) respectively. It should be noted that these are maximum car parking standards.

Table 1: Car Parking Standards (maximum standards) (zones 5 \& 6 - countryside \& deep rural)

Land Use	Gross Floor Area	Operational Standard	Non-Operational Standard
B1 Office *	$75,890 \mathrm{~m}^{2}$	-	1 space per $40 \mathrm{~m}^{2}$
B2 Industrial	$37,945 \mathrm{~m}^{2}$	10%	1 space per $80 \mathrm{~m}^{2}$
B8 Industrial		10%	1 space per $140 \mathrm{~m}^{2}$
B8 Storage	$75,890 \mathrm{~m}^{2}$	1 space per $500 \mathrm{~m}^{2}$	-
B8 Warehouse		10%	1 space per $80 \mathrm{~m}^{2}$

* note: zones 4 to 6

Table 2: Car Parking Standards (maximum standards) (zones 3 \& 4 - urban, suburban, near urban)

Land Use	Gross Floor Area	Operational Standard	Non-Operational Standard
B1 Office *	$75,890 \mathrm{~m}^{2}$	-	1 space per $60 \mathrm{~m}^{2}$
B2 Industrial	37,945m²	10\%	1 space per $120 \mathrm{~m}^{2}$
B8 Industrial		10\%	1 space per $140 \mathrm{~m}^{2}$
B8 Storage	75,890m²	1 space per $500 \mathrm{~m}^{2}$	-
B8 Warehouse		10\%	1 space per $120 \mathrm{~m}^{2}$

* note: zones 2 to 3
1.15 An initial estimate of the maximum number of car parking spaces has been made based upon the above car parking standards (maximum standards). There are three different car parking standards for B8 land uses depending upon the specific activities being undertaken (B8 industrial, B8 storage or B8 warehouse). For the purposes of assessment only, it has been assumed that the total B8 GFA is equally mixed of all three.
1.16 The resultant maximum number of car parking spaces based upon zones five and six (current) and zones three and four (potential future) are set out in Tables 3 and 4 respectively.
1.17 For a direct comparison to the vehicular trips generated contained in the TA, the number of maximum car parking spaces have been calculated based upon the GFAs contained in the TA.

Table 3: Maximum Number of Car Parking Spaces (zones 5 \& 6 - countryside \& deep rural)

Land Use	Gross Floor Area	Operational Provision	Non-Operational Provision	Total Car Parking Spaces
B1 Office *	$75,890 \mathrm{~m}^{2}$	-	1,897 spaces	1,897 spaces
B2 Industrial	$37,945 \mathrm{~m}^{2}$	$3,794.5 \mathrm{~m}^{2}$	474 spaces	474 spaces
B8 Industrial	$25,297 \mathrm{~m}^{2}$	$2,530 \mathrm{~m}^{2}$	181 spaces	181 spaces
B8 Storage	$25,297 \mathrm{~m}^{2}$	51 spaces	-	51 spaces
B8 Warehouse	$25,297 \mathrm{~m}^{2}$	$6,324 \mathrm{~m}^{2}$	316 spaces	316 spaces
Total			2,919 spaces	

* note: zones 4 to 6

Table 4: Maximum Number of Car Parking Spaces (zones 3 \& 4 - urban, suburban, near urban)

Land Use	Gross Floor Area	Operational Provision	Non-Operational Provision	Total Car Parking Spaces
B1 Office *	$75,890 \mathrm{~m}^{2}$	-	1,265 spaces	1,265 spaces
B2 Industrial	$37,945 \mathrm{~m}^{2}$	$3,794.5 \mathrm{~m}^{2}$	474 spaces	474 spaces
B8 Industrial	$25,297 \mathrm{~m}^{2}$	$2,530 \mathrm{~m}^{2}$	181 spaces	181 spaces
B8 Storage	$25,297 \mathrm{~m}^{2}$	51 spaces	-	51 spaces
B8 Warehouse	$25,297 \mathrm{~m}^{2}$	$6,324 \mathrm{~m}^{2}$	211 spaces	211 spaces
Total				2,181 spaces

* note: zones 2 to 3
1.18 As can be seen, if the site is considered within zones five and six (current), the car parking standards (maximum standards) suggest that a maximum of up to 2,919 car parking spaces could be provided.
1.19 If the site is considered within zones three and four (potential future), the car parking standards (maximum standards) suggest that a maximum of up to 2,181 car parking spaces could be provided.
1.20 As set out in the Transport Assessment, the intention is not to provide car parking spaces based upon a maximum standard. Instead, it is proposed to provide a level of car parking that is below the maximum standards in conjunction with a range of transport measures to seek to reduce reliance on the private car.

Item 4 - Highway Capacity Assessment of Sycamore Cross Junction

1.21 The Review notes that the increase in traffic through the Sycamore Cross junction as a result of the proposals is approximately 10%. It suggests that the operation of the Sycamore Cross junction and the impact of development upon the junction is assessed.

Response to Item 4

1.22 A LinSig (v3,2,27,0) model has been constructed in order to analyse the impact of development upon the operation of the Sycamore Cross traffic signal junction during the weekday AM and PM peak hours using the 2026 and 2029 with and without development traffic flow scenarios set out in the TA.
1.23 For ease of reference, the traffic flows through the junction for each of the scenarios are attached at Appendix B. Given that the classification of HGVs in terms of rigid or articulated is not known, PCUs have been calculated by applying a factor of 2.0 to all HGVs.
1.24 The geometries of the junction have recently been improved and it operates under MOVA control (Microprocessor Optimised Vehicle Actuation). The current traffic signal data sheets, observed stage timings downloaded from site ($11^{\text {th }}$ to $18^{\text {th }}$ November 2019) and the as built drawings have been supplied by TVoGC. These are attached at Appendix C and have all been used to construct the model.
1.25 The as built layout drawings provided the staging diagrams, lane naming convention and lane markings. The turning radii, lane widths and flare lengths were measured from the drawings and saturation flows were calculated using RR67 methodologies.
1.26 It should be noted that the junction operates under MOVA control and therefore green times, staging and phase times are adjusted in real time on a continual basis depending on traffic demand, queues and vehicle speeds. This cannot be replicated within LinSig and therefore only a fixed time representation of the junction can be modelled. The actual operation of the junction will therefore be better than that modelled within LinSig.
1.27 The junction operates with five stages in total, the fifth being a pedestrian stage. The stage timing data provided by TVoGC shows that this stage is not called during the weekday AM and PM peak hours, therefore pedestrians have not been modelled. The average weekday stage times have been calculated from the data provided by TVoGC and these are set out in Table 5.

Table 5: Observed Average Stage Times

	Stage 1	Stage 2	Stage 3	Stage 4	Cycle Time
AM Peak Hour	11 seconds	25 seconds	11 seconds	12 seconds	83 seconds
PM Peak Hour	19 seconds	15 seconds	12 seconds	10 seconds	80 seconds

1.28 A summary of the LinSig assessments are set out in Tables 6 and 7 for the AM and PM peak hour periods respectively and full output files are attached at Appendix D.

Table 6: Summary of AM Peak Hour LinSig Operational Assessments at Sycamore Cross Junction

	2026 AM Base			2026 AM Base + DEV			2029 AM Base			2029 AM Base + Dev		
Arm / Link \& Lane	Sat \%	MMQ	Delay (s/pcu)	Sat \%	MMQ	Delay (s/pcu)	Sat \%	MMQ	Delay (s/pcu)	Sat \%	MMQ	Delay (s/pcu)
1/1 Lane 1- nearside left to A48 W/B and right to A48 E/B	66.0	9.1	30.3	69.3	9.9	31.5	66.6	9.2	30.5	69.7	10.0	31.6
1/2 Lane 2 - offside right turn to A48 eastbound	73.5	11.9	32.4	76.3	12.7	33.8	73.6	11.9	32.5	76.3	12.7	33.8
A48 Westbound Prior to A4226												
2/1 Lane 1 - nearside left turn to A4226	33.3	4.4	10.2	54.9	8.8	12.9	34.4	4.6	10.3	54.1	8.5	12.7
2/2 Lane 2 - offside ahead to A48 westbound	39.8	2.9	42.0	39.2	2.8	41.8	39.8	2.9	42.0	39.5	2.8	41.9
2/3 Lane 3 - offside ahead to A48 westbound	50.1	3.4	39.8	48.6	3.3	39.7	50.2	3.4	39.7	49.1	3.3	39.7
2/4 Lane 4-offside short flare ahead to A48 westbound												
A48 Eastbound between Access Road from Pendoylan and A4226												
5/1 Lane 1- nearside ahead eastbound to A48	55.6	10.1	7.5	54.3	9.6	7.3	55.8	10.1	7.5	54.9	9.7	7.3
5/2 Lane 2 - offside right turn to A4226	69.0	9.3	24.5	70.8	9.8	25.7	70.5	9.7	25.1	72.4	10.1	27.1
A48 Eastbound Prior to Access Road to Pendoylan												
8/1 Lane 1 - nearside left turn to Pendoylan	48.6	7.9	15.8	47.5	7.8	15.7	48.8	8.1	15.8	48.0	7.8	15.7
8/2 Lane 2 - offside ahead to A48 eastbound												
8/3 Lane 3 - offside ahead to A48 eastbound	34.9	5.4	14.3	35.1	5.4	14.3	35.6	5.6	14.4	35.0	5.4	14.3
Access Road from Pendoylan												
13/1 Lane 1-nearside left turn flare to A48 eastbound	31.8	2.0	38.8	33.4	2.2	39.2	32.7	2.1	38.7	38.1	2.5	39.8
13/2 Lane 2 - offside right turn to A48 westbound												
A48 Westbound between A4226 and Access Road to Pendoylan												
14/1 Lane 1 - nearside ahead to A48 westbound	37.6	3.6	9.1	36.4	3.6	9.2	37.7	3.7	9.2	36.8	3.7	9.3
14/2 Lane 2 - offside ahead to A48 westbound	43.1	4.7	9.7	41.2	4.6	9.7	43.2	4.7	9.8	41.9	4.7	9.9
14/3 Lane 3 - offside right turn to Pendoylan and A48 WB	55.1	3.6	57.7	51.1	3.2	56.4	56.6	3.7	58.4	52.3	3.3	57.0
Practical Reserve Capacity Overall \%	22.5\%			18.0\%			22.2\%			18.0\%		
Total Delay Overall (signal-controlled lanes only) pcuHr	26.11			27.71			26.63			28.35		
Cycle Time	83 Seconds											

Table 7: Summary of PM Peak Hour LinSig Operational Assessments at Sycamore Cross Junction

	2026 PM Base			2026 PM Base + DEV			2029 PM Base			2029 PM Base + Dev				
Arm / Link \& Lane	Sat \%	MMQ	$\begin{aligned} & \text { Delay } \\ & \text { (s/pcu) } \end{aligned}$	Sat \%	MMQ	Delay (s/pcu)	Sat \%	MMQ	$\begin{aligned} & \text { Delay } \\ & \text { (s/pcu) } \end{aligned}$	Sat \%	MMQ	Delay (s/pcu)		
A4226 Northbound														
1/1 Lane 1-nearside left to A48 W/B and right to A48 E/B	66.2	8.7	29.7	68.7	9.3	30.5	67.1	8.9	30.1	69.8	9.6	31.0		
1/2 Lane 2 - offside right turn to A48 eastbound	65.1	9.5	28.4	73.4	11.5	31.5	65.2	9.5	28.4	74.1	11.6	31.8		
A48 Westbound Prior to A4226														
2/1 Lane 1 - nearside left turn to A4226	47.8	6.3	7.2	47.8	6.3	7.2	49.7	6.7	7.4	47.8	6.3	7.2		
2/2 Lane 2 - offside ahead to A48 westbound	56.0	6.3	33.9	55.5	6.3	33.7	54.5	6.1	33.5	56.4	6.4	33.9		
2/3 Lane 3-offside ahead to A48 westbound	59.5	5.8	32.2	60.1	6.0	32.3	58.4	5.6	31.8	60.7	6.1	32.5		
A48 Eastbound between Access Road from Pendoylan and A4226														
5/1 Lane 1 - nearside ahead eastbound to A48	30.8	5.0	8.0	34.5	5.6	7.8	31.6	5.3	8.1	33.4	5.5	8.0		
5/2 Lane 2-offside right turn to A4226	99.8	17.8	114.4	92.1	12.0	69.4	101.6	20.1	133.0	94.7	13.5	80.6		
A48 Eastbound Prior to Access Road to Pendoylan														
8/1 Lane 1 - nearside left turn to Pendoylan	22.0	2.8	12.7	26.0	3.4	13.0	22.5	2.9	12.7	24.8	3.2	12.9		
8/2 Lane 2 - offside ahead to A48 eastbound									13.7			13.5		
Access Road from Pendoylan														
13/1 Lane 1- nearside left turn flare to A48 eastbound	54.1	3.3	45.3	51.7	3.2	44.5	55.8	3.5	45.8	52.5	3.2	44.4		
A48 Westbound between A4226 and Access Road to Pendoylan														
14/1 Lane 1 - nearside ahead to A48 westbound			49.5	4.5	6.7	47.5	4.4	6.5	48.9	7.2	6.8	48.4	4.5	6.6
14/2 Lane 2 - offside ahead to A48 westbound	51.1	7.3	7.6	50.4	7.6	7.7	50.4	7.3	7.7	50.5	7.7	7.7		
14/3 Lane 3 - offside right turn to Pendoylan and A48 WB	48.3	3.2	51.1	47.2	3.2	51.4	50.4	3.4	51.6	49.0	3.3	51.6		
Practical Reserve Capacity Overall \%	-10.9\%			-2.3\%			-12.9\%			-5.3\%				
Total Delay Overall (signal-controlled lanes only) pcuHr	35.13			30.99			37.63			32.79				
Cycle Time	80 Seconds													

1.29 Table 6 shows that the Sycamore Cross junction is predicted to operate within capacity during the AM peak hour in all 2026 and 2029 scenarios, both with and without development.
1.30 A Practical Reserve Capacity (PRC) of 22.5% is predicted in the 2026 base scenario, reducing to 18.0% in the 2026 base plus development scenario. In 2029, a PRC of 22.2% is predicted without development, reducing to 18.0% with development.
1.31 During the PM peak hour, Table 7 shows the Sycamore Cross junction is predicted to operate at capacity, however, only on one movement; the eastbound right turn from the A48 into the A4226. It is noted that the development does not increase traffic flows on this movement. Indeed, there is a small reduction in vehicle movements on this movement in the with development scenario. Thus, the development does not cause any worsening to this movement or the operation of the junction.
1.32 A PRC of -10.9% is predicted in the 2026 base scenario during the PM peak hour, improving to -2.3% in the 2026 base plus development scenario. In 2029, a PRC of -12.9% is predicted without development, improving to -5.3% with development
1.33 During the PM peak hour, a maximum Degree of Saturation (Sat \%) of 99.8% is predicted in the 2026 base scenario on the eastbound right turn from the A48 into the A4226, improving to 92.1% in the 2026 base plus development scenario. In 2029, a Sat \% of 101.6% is predicted on the eastbound right turn from the A48 into the A4226 without development, improving to 94.7% with development.
1.34 Although the development will increase traffic flows as a whole through the junction, these increases are on movements that are predicted to operate within capacity and would continue to do so following the addition of development.
1.35 The modelling shows that the development would not result in a significant impact at the Sycamore Cross junction.

Item 5 - Phasing

1.36 Although not specifically mentioned in the Review, phasing was discussed during the meeting between TVoGC, Legal \& General (Strategic Land) Ltd and RPS on $21^{\text {st }}$ October 2019. At the time of preparing the planning application, there was not an estimated build out programme and the number of trips generated by each mode of transport for key build-out milestones was not able to be calculated.

Response to Item 5

Legal \& General (Strategic Land) Ltd have since developed a hypothetical build out programme, as set out in Table 8. This is only hypothetical at this stage and only to inform this TN.

Table 8: Estimated Annual Build-Out

Year	B1 - Office	B1c/B2/B8	Industrial Land Sale	Front Land Sale	Total
1	$929 \mathrm{~m}^{2}$	4,625 m²	8,361 m²	2,323 m²	16,258 m^{2}
2	929 m²	4,625 m²	8,361 m²	$465 \mathrm{~m}^{2}$	$14,400 \mathrm{~m}^{2}$
3	929 m²	4,625 m²	5,574 m²	$465 \mathrm{~m}^{2}$	$11,613 \mathrm{~m}^{2}$
4	929 m²	4,625 m²	5,574 m²	1,858 m²	13,006 m²
5	929 m²	4,625 m²	4,831 m²	2,323 m²	$13,471 \mathrm{~m}^{2}$
6	929 m²	4,625 m²	4,831 m²	1,858 m²	12,263 m²
7	929 m²	4,625 m²	4,831 m²	2,323 m²	12,728 m²
8	929 m²	4,625 m²	4,831 m²	2,323 m²	12,728 m²
9	929 m²	4,625 m²	4,831 m²	-	10,405 m²
10	929 m²	4,625 m²	4,831 m²	-	10,405 m²
11	929 m²	4,625 m²	4,831 m²	-	10,405 m²
12	929 m²	4,625 m²	-	-	5,574 m²
13	929 m²	4,625 m²	-	-	5,574 m²
14	-	4,625 m²	-	-	4,645 m²
15	-	4,625 m²	-	-	4,645 m²
Total	12,077 m^{2} GFA	69,677 m^{2} GFA	62,430 m² GFA	13,935 m² GFA	158,120 m² GFA

1.38 In summary, estimated Gross Floor Area (GFA) per land use is broken down into the following mix:

- B1 Office: approx. $12,000 \mathrm{~m}^{2}$ GFA;
- B1c / B2 / B8: approx. $70,000 \mathrm{~m}^{2}$ GFA;
- Industrial Land Sale: approx. $62,000 \mathrm{~m}^{2}$ GFA; and
- Front Land Sale: approx. $14,000 \mathrm{~m}^{2}$ GFA.
1.39 For assessment purposes only, to enable a direct comparison to the TA, the following assumptions have been made:
- The above B 1 build out is representative of the B 1 assumptions (including trip rate) in the TA;
- The above $\mathrm{B} 1(\mathrm{C}) / \mathrm{B} 2 / \mathrm{B} 8$ build out is one-third B 1 , one-third B 2 and one-third B 8 and representative of each of these assumptions (including trip rate) in the TA;
- The above front land sale build out is one-third B1, one-third B2 and one-third B8 and representative of each of these assumptions (including trip rate) in the TA; and
- The above industrial land sale build out is representative of the B2 assumptions (including trip rate) in the TA.
1.40 Using this estimated phasing, the multi modal trip generating capabilities for each year of the build out has been calculated for the AM (07:45 to 08:45) and PM (16:30 to 17:30) peak hours as well as a 12 hour (07:00 to 19:00) daily period. The results are summarised in Table 9.

Table 9: Estimated Trip Generation Capability per Year

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
Year 1								
AM Peak (0745-0845)	71	3	15	3	12	12	6	123
PM Peak (1630-1730)	67	3	15	3	12	12	6	116
12 Hour (0700-1900)	587	26	128	26	102	102	51	1020
Year 2								
AM Peak (0745-0845)	62	3	13	3	11	11	5	107
PM Peak (1630-1730)	59	2	13	2	10	10	5	102
12 Hour (0700-1900)	512	22	111	22	89	89	45	891
Year 3								
AM Peak (0745-0845)	53	2	12	2	9	9	5	92
PM Peak (1630-1730)	49	2	11	2	9	9	4	86
12 Hour (0700-1900)	433	19	94	19	75	75	38	754
Year 4								
AM Peak (0745-0845)	60	3	13	3	10	10	5	104
PM Peak (1630-1730)	56	2	12	2	10	10	5	97
12 Hour (0700-1900)	489	21	106	21	85	85	42	850
Year 5								
AM Peak (0745-0845)	62	3	14	3	11	11	5	108
PM Peak (1630-1730)	58	2	13	2	10	10	5	100
12 Hour (0700-1900)	508	22	110	22	88	88	44	883
Year 6								
AM Peak (0745-0845)	58	3	13	3	10	10	5	100
PM Peak (1630-1730)	53	2	12	2	9	9	5	93
12 Hour (0700-1900)	468	20	102	20	81	81	41	814
Year 7								
AM Peak (0745-0845)	60	3	13	3	10	10	5	104
PM Peak (1630-1730)	55	2	12	2	10	10	5	96
12 Hour (0700-1900)	487	21	106	21	85	85	42	846
Year 8								
AM Peak (0745-0845)	60	3	13	3	10	10	5	104
PM Peak (1630-1730)	55	2	12	2	10	10	5	96
12 Hour (0700-1900)	487	21	106	21	85	85	42	846
Year 9								
AM Peak (0745-0845)	48	2	11	2	8	8	4	84
PM Peak (1630-1730)	45	2	10	2	8	8	4	78
12 Hour (0700-1900)	394	17	86	17	68	68	34	685
Year 10								
AM Peak (0745-0845)	48	2	11	2	8	8	4	84
PM Peak (1630-1730)	45	2	10	2	8	8	4	78
12 Hour (0700-1900)	394	17	86	17	68	68	34	685
Year 11								
AM Peak (0745-0845)	48	2	11	2	8	8	4	84
PM Peak (1630-1730)	45	2	10	2	8	8	4	78
12 Hour (0700-1900)	394	17	86	17	68	68	34	685
Year 12								
AM Peak (0745-0845)	33	1	7	1	6	6	3	58
PM Peak (1630-1730)	29	1	6	1	5	5	3	50

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
12 Hour (0700-1900)	257	11	56	11	45	45	22	446
Year 13								
AM Peak (0745-0845)	33	1	7	1	6	6	3	58
PM Peak (1630-1730)	29	1	6	1	5	5	3	50
12 Hour (0700-1900)	257	11	56	11	45	45	22	446
Year 14								
AM Peak (0745-0845)	23	1	5	1	4	4	2	41
PM Peak (1630-1730)	21	1	5	1	4	4	2	36
12 Hour (0700-1900)	186	8	40	8	32	32	16	323
Year 15								
AM Peak (0745-0845)	23	1	5	1	4	4	2	41
PM Peak (1630-1730)	21	1	5	1	4	4	2	36
12 Hour (0700-1900)	186	8	40	8	32	32	16	323

1.41 It should be noted that the above estimates are based upon the predicted build out of the development, whereas the application seeks up to $189,000 \mathrm{~m}^{2}$ GFA. Table 10 has therefore been created to show the annual trip generation of the proposals based upon the maximum GFA sought as part of the planning application.

Table 10: Estimated Trip Generation Capability per Year (189,000m² GFA)

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
Year 1								
AM Peak (0745-0845)	85	4	19	4	15	15	7	148
PM Peak (1630-1730)	80	3	17	3	14	14	7	140
12 Hour (0700-1900)	704	31	153	31	122	122	61	1224
Year 2								
AM Peak (0745-0845)	74	3	16	3	13	13	6	129
PM Peak (1630-1730)	70	3	15	3	12	12	6	122
12 Hour (0700-1900)	615	27	134	27	107	107	53	1069
Year 3								
AM Peak (0745-0845)	63	3	14	3	11	11	6	110
PM Peak (1630-1730)	59	3	13	3	10	10	5	103
12 Hour (0700-1900)	520	23	113	23	90	90	45	904
Year 4								
AM Peak (0745-0845)	72	3	16	3	12	12	6	125
PM Peak (1630-1730)	67	3	14	3	12	12	6	116
12 Hour (0700-1900)	587	26	128	26	102	102	51	1020
Year 5								
AM Peak (0745-0845)	75	3	16	3	13	13	6	130
PM Peak (1630-1730)	69	3	15	3	12	12	6	120
12 Hour (0700-1900)	609	27	132	27	106	106	53	1059
Year 6								
AM Peak (0745-0845)	69	3	15	3	12	12	6	120
PM Peak (1630-1730)	64	3	14	3	11	11	6	111
12 Hour (0700-1900)	561	24	122	24	98	98	49	977
Year 7								
AM Peak (0745-0845)	72	3	16	3	12	12	6	125
PM Peak (1630-1730)	66	3	14	3	12	12	6	115

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
12 Hour (0700-1900)	584	25	127	25	102	102	51	1015
Year 8								
AM Peak (0745-0845)	72	3	16	3	12	12	6	125
PM Peak (1630-1730)	66	3	14	3	12	12	6	115
12 Hour (0700-1900)	584	25	127	25	102	102	51	1015
Year 9								
AM Peak (0745-0845)	58	3	13	3	10	10	5	101
PM Peak (1630-1730)	54	2	12	2	9	9	5	94
12 Hour (0700-1900)	472	21	103	21	82	82	41	821
Year 10								
AM Peak (0745-0845)	58	3	13	3	10	10	5	101
PM Peak (1630-1730)	54	2	12	2	9	9	5	94
12 Hour (0700-1900)	472	21	103	21	82	82	41	821
Year 11								
AM Peak (0745-0845)	58	3	13	3	10	10	5	101
PM Peak (1630-1730)	54	2	12	2	9	9	5	94
12 Hour (0700-1900)	472	21	103	21	82	82	41	821
Year 12								
AM Peak (0745-0845)	40	2	9	2	7	7	3	69
PM Peak (1630-1730)	35	1	8	1	6	6	3	61
12 Hour (0700-1900)	308	13	67	13	54	54	27	536
Year 13								
AM Peak (0745-0845)	40	2	9	2	7	7	3	69
PM Peak (1630-1730)	35	1	8	1	6	6	3	61
12 Hour (0700-1900)	308	13	67	13	54	54	27	536
Year 14								
AM Peak (0745-0845)	28	1	6	1	5	5	2	49
PM Peak (1630-1730)	25	1	5	1	4	4	2	43
12 Hour (0700-1900)	223	10	48	10	39	39	19	388
Year 15								
AM Peak (0745-0845)	28	1	6	1	5	5	2	49
PM Peak (1630-1730)	25	1	5	1	4	4	2	43
12 Hour (0700-1900)	223	10	48	10	39	39	19	388

1.42 The multi modal trip generation shown in Table 10 ($189,000 \mathrm{~m}^{2}$ GFA) has been aggregated to determine the cumulative trips per annum generated by the build out of the proposals, as shown in Table 11.

Table 11: Estimated Cumulative Trip Generation Capability (189,000m² GFA)

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
Year 1								
AM Peak (0745-0845)	85	4	19	4	15	15	7	148
PM Peak (1630-1730)	80	3	17	3	14	14	7	140
12 Hour (0700-1900)	704	31	153	31	122	122	61	1,224
(Year 2								
AM Peak (0745-0845)	159	7	35	7	28	28	14	277
PM Peak (1630-1730)	151	6	33	6	26	26	13	262
12 Hour (0700-1900)	1,319	57	287	57	229	229	115	2,293

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total
Year 3								
AM Peak (0745-0845)	222	10	48	10	39	39	19	387
PM Peak (1630-1730)	210	9	46	9	37	37	18	365
12 Hour (0700-1900)	1,838	80	400	80	320	320	160	3,197
Year 4								
AM Peak (0745-0845)	294	13	64	13	51	51	26	512
PM Peak (1630-1730)	277	12	60	12	48	48	24	481
12 Hour (0700-1900)	2,425	106	527	106	422	422	211	4,218
Year 5								
AM Peak (0745-0845)	369	16	80	16	64	64	32	642
PM Peak (1630-1730)	346	15	75	15	60	60	30	602
12 Hour (0700-1900)	3,034	132	660	132	528	528	264	5,277
(Year 6								
AM Peak (0745-0845)	438	19	95	19	76	76	38	762
PM Peak (1630-1730)	410	17	89	17	71	71	36	713
12 Hour (0700-1900)	3,596	157	782	157	625	625	312	6,253
Year 7								
AM Peak (0745-0845)	510	22	111	22	89	89	44	887
PM Peak (1630-1730)	477	20	103	20	83	83	42	828
12 Hour (0700-1900)	4,180	182	909	182	727	727	363	7,269
Year 8								
AM Peak (0745-0845)	581	26	127	26	101	101	51	1,012
PM Peak (1630-1730)	543	23	118	23	95	95	47	943
12 Hour (0700-1900)	4,763	207	1,036	207	828	828	414	8,284
Year 9								
AM Peak (0745-0845)	639	28	139	28	111	111	56	1,113
PM Peak (1630-1730)	597	25	129	25	104	104	52	1,037
12 Hour (0700-1900)	5,236	228	1,138	228	910	910	455	9,105
Year 10								
AM Peak (0745-0845)	697	31	152	31	121	121	61	1,214
PM Peak (1630-1730)	651	28	141	28	113	113	57	1,131
12 Hour (0700-1900)	5,708	249	1,241	249	992	992	496	9,927
Year 11								
AM Peak (0745-0845)	755	33	165	33	131	131	66	1,314
PM Peak (1630-1730)	705	30	153	30	123	123	61	1,225
12 Hour (0700-1900)	6,180	269	1,344	269	1,075	1,075	537	10,748
Year 12								
AM Peak (0745-0845)	795	35	173	35	138	138	69	1,384
PM Peak (1630-1730)	740	31	160	31	129	129	64	1,285
12 Hour (0700-1900)	6,488	283	1,411	283	1,128	1,128	564	11,284
Year 13								
AM Peak (0745-0845)	835	37	182	37	145	145	73	1,453
PM Peak (1630-1730)	775	33	168	33	135	135	67	1,346
12 Hour (0700-1900)	6,796	296	1,478	296	1,182	1,182	590	11,819
Year 14								
AM Peak (0745-0845)	863	38	188	38	150	150	75	1,502
PM Peak (1630-1730)	799	34	173	34	139	139	70	1,389
12 Hour (0700-1900)	7,019	306	1,526	306	1,220	1,220	610	12,207

Period	Car Driver	Rail	Bus	M/C	Car Passenger	Bicycle	On Foot	Total	
	Year 15								
AM Peak (0745-0845)	891	39	194	39	155	155	77	1,550	
PM Peak (1630-1730)	824	35	179	35	144	144	72	1,432	
12 Hour (0700-1900)	7,242	315	1,575	315	1,259	1,259	629	12,595	

1.43 The vehicular trips generated in Table 11 are slightly lower than those set out in the TA. This is because the TA was based upon the total GFA of $189,000 \mathrm{~m}^{2}$ comprising of 40% B1 / 20\% B2 / 40% B8, which was devised in advance of a potential build out being developed and to ensure a worst case in terms of traffic generation was assessed.
1.44 Given that the vehicular trips generated in Table 11 are slightly lower than those set out in the TA, it provides confidence to the assessments in the TA being robust.

Appendices

Appendix A - Transport Assessment Review Document

Land at Model Farm

Transport Assessment Review

28 October 2019

Mott MacDonald
2 Callaghan Square
Cardiff CF10 5BT
United Kingdom
T +44 (0)29 20467800 mottmac.com

The Vale of Glamorgan Council

Transport Assessment Review

28 October 2019

Issue and Revision Record

Document reference: 389508AD | 1 | A

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

1 Introduction 1
2 Policy Review 2
3 Existing and Baseline Conditions 3
4 Development Proposals 5
5 Car Parking Management 6
6 Future Year Transport Situation 7
7 Development Travel Demand 8
8 Strategic Modelling and Transport Impact 9
9 Transport Implementation Strategy 10
10 Summary and Conclusions 11

1 Introduction

Mott MacDonald were commissioned by the Vale of Glamorgan Council (TVoGC) in September 2019 to undertake a review of a Transport Assessment submitted in support of an outline planning application, for land at Model Farm near Rhoose.

The Transport Assessment was undertaken in July 2019 by RPS on behalf of Legal \& General (Strategic Land) Ltd. The application proposes mixed use employment:

- B1 Office - 75,890m²
- B2 General Industrial - 37,945m²
- B8 Storage and Distribution - 75,890m²

This report will broadly follow the structure of the Transport Assessment (TA) and provide comment and recommendation where appropriate.

2 Policy Review

Section 2 of the Transport Assessment (TA) provides an overview of relevant planning and transport policy. It highlights some of the key and relevant issues in terms of land use planning and transport.

The review considers most of the relevant national and local policy documents. The Well-being of Future Generations Act should be considered in this section and how the proposed development works towards achieving the well-being goals.

Paragraph 2.15-2.23 focuses on local planning and transport policy. It provides the aims and objectives of the Local Transport Plan (LTP) and sets out the transport requirements of the Local Development Plan (LDP). The development site is identified on the LDP proposals map as a site for Employment Allocation and Strategic Development. Rhoose to the west of the site is considered a Primary Settlement. The LTP indicates that the A4226 forms part of the strategic highway network and is identified as a Strategic Transport Corridor. The LTP references a number of issues, opportunities and interventions along this corridor.

The TA acknowledges that the policy documents aim to promote sustainable travel to and from developments and encourage development in areas that maximise sustainable transport opportunities, including an emphasis on cycling and walking for shorter trips. New developments should have no unacceptable highway safety or congestion impacts.

It is considered that the proposed development is generally in accord with local and national policy. The site is located in an LDP allocation for employment and strategic development, with good opportunity to incorporate walking and cycling infrastructure into the internal design and development of the site. However, to increase the mode share of public transport and active travel journeys from wider key destinations, suitable mitigation will be required. The strategic transport corridor should remain resilient and congestions free, with alternative modes of travel available that are viable and attractive to users.

3 Existing and Baseline Conditions

The application site forms a parcel of land located between Cardiff Airport and Porthkerry Park, approximately 2 km northeast of Rhoose and 4 km west of Barry. The land is separated from the airport by Port Road and Porthkerry Road, which forms a border along the western edge of the proposed site

Allocated in the LDP, the site forms part of the Cardiff Airport - St. Athan Enterprise Zone, and the vision for the wider development area is to create an 'airport city'.

The site is isolated from the existing settlements and composed solely of employment land uses. As such currently it could be considered to have a low degree of sustainability, although this will improve as the wider area and airport city is developed. It would be possible to improve sustainability by ensuring that some amenities (for example a shop, café or gym) are available to workers at the site.

The TA provides an accurate description of the local highway network. The main access route to the development site will be from the A4226 to the north, via the A4226/Port Road roundabout. The site can also be accessed from the south, via Porthkerry Road from Rhoose.

It should be noted that Porthkerry Road has lighting for approximately 450 m from the Port Road roundabout at its northern end. The remaining 1.4 km before the road enters Rhoose is currently unlit. This will affect its suitability as a walking and cycling route between Rhoose and the development.

National Cycle Network route 88 provides a route for cyclists and pedestrians to Barry and Rhoose, including an off-carriageway shared pedestrian/cycle route alongside Porthkerry Road to Rhoose, and a path through Porthkerry County Park to the southwestern edge of Barry. The TA suggests that these routes will also be used by commuters, with Rhoose railway station and residential areas of Rhoose and Barry within a 40 minute walking distance.

While considered to be within an acceptable commute time for cyclists, to both Rhoose and Barry, it is not considered acceptable for commuting on foot. In addition to the journey time, Porthkerry Road is not lit in full and neither is the path through Porthkerry County Park, which will limit the attractiveness in terms of safety and security for users, particularly during winter months and hours of darkness.

Three bus stops are identified close to the development site. One on the A4226 and two serving airport hotels on Port Road. The closest rail stations are identified as Rhoose and Barry.

The TA summarises the bus services available from the three nearby stops and the rail services from Rhoose Rail Station. It is noted that service X91 no longer operates.

Hourly rail services to Cardiff Central, Bridgend and Aberdare and a service to Newport run every 30 minutes. The higher frequency to Newport is possible because of the option to travel via Bridgend and approach Rhoose from the west. Barry Station has a higher service frequency, with a service to Cardiff every 15-20 minutes.

The three existing bus stops would serve most of the development, within the 400 m (desirable walkable distance). It is understood that bus routes are also to be extended into the development site.

The TA suggests that rail users would walk from the development site to Rhoose and Barry stations. Due to the walk times, this is considered unlikely, and therefore bus services should be an important aspect of the transport implementation strategy.

Personal injury accident data has been reviewed for the most recent five years available. The TA provides the number of slight and serious collisions at each junction and details of the type of vehicles involved. No further information is provided on the nature of the accidents. The TA states that the road network has an atypical number of injury accidents and concludes that there are no highway safety issues on the network that was analysed.

Causation factors have not been made available due to Welsh Government data protection and confidentiality restrictions. It is recommended that TVoGC review the accident information they hold and provide a view on the road safety. However, a review of the area using crashmap.co.uk has been undertaken, which shows three accidents grouped together in close proximity to the proposed site access points. One at the A4226/Port Road roundabout and another on Port Road to the south of the Hilton access roundabout. In addition, there were two serious accidents on Porthkerry Road. At present the TA does not adequately show that there are no highway safety issues in the vicinity of the site.

4 Development Proposals

This section outlines the nature and location of the proposed development, including the proposed access arrangements:

- Northern access: a forth arm on the Port Road/A4226 roundabout.
- Southern access: a priority controlled T-junction from the unnamed road that serves the Holiday Inn Express.

For both junctions, outline designs have been provided, which have been used to assess the junction capacity. At the northern access a four-arm roundabout is proposed with an increased ICD of 60 m . The local road alignment will be slightly adjusted to accommodate the fourth arm, and the A4226 approach arms will be widened to a three-lane flare.

The detailed design of these junctions and the internal roads will be a reserved matter, to be agreed with TVoGC. The layout is considered to be acceptable in principal and suitable to use for junction capacity analysis. It is recommended that a Road Safety Audit is also conditioned in reserved matters.

The sites Sustainable Access Strategy includes incorporating good quality walking and cycling routes into the site design, including along the main spine road, with links to the surrounding network at appropriate points and the provision of bus stops within the site. The internal infrastructure will also provide an alternative route to Port Road for pedestrians and cyclists from outside of the development.

The TA suggests that TVoGC are receiving contributions from developers for the improvement of public transport services and therefore, will separately confirm the final public transport strategy associated with the Model Farm development. Details of the public transport strategy need to be agreed and confirmed. The TA is based on a significant change in modal share, primarily as a result of increased journeys by cycling, bus and as a passenger. The number of trips by bus has been assumed to increase by 10%. Therefore, the public transport strategy is considered to be crucial in ensuring the development is sustainable, with good opportunity to travel from wider destinations by modes other than private car.

5 Car Parking Management

This chapter of the TA presents draft measures for a Car Parking Management Plan (CPMP), which is to be produced in full for the reserved matters application.

The TA correctly identifies the development site, in the Vale of Glamorgan Parking Standards site, as in Zone E - Deep Rural. It is recognised that if the wider development aspirations of the enterprise zone are fulfilled, particularly with enhancements to public transport, the site would no longer be classified as deep rural. However, it is noted that the parking standard applied to offices in Zone E is the same as for Zones D (Countryside) for industrial and warehouse uses and also as C (suburban - as Rhoose and the outer areas of Barry) for office uses. The maximum parking standard quoted are therefore not considered to be excessively high based on TVoGC's parking standards.

For Heavy Goods Vehicles, the TA states that parking will be provided to match the need of the occupiers. Operational areas, layout and parking will need to be considered in detail and approved by TVoGC as a reserved matter.

The TA quotes the Vale of Glamorgan standard for cycle parking proposes an increased provision, to be agreed with the TVoGC. Motorcycle provision is suggested to be 5% of total parking provision.

The CPMP includes considering a parking permit system and barrier controls. It suggests restricting employees within a set distance from obtaining a permit. TROs are to be used throughout the site to prevent parking on internal roads. Appropriate provision is to be made for electric vehicle charging and car sharing spaces.

It is agreed that there will need to be an emphasis on parking management, which will play an important role in encouraging sustainable travel, by limiting and restricting availability. As the site is in close proximity to Cardiff Airport, parking controls and enforcement will be required to prevent airport users from parking erroneously.

6 Future Year Transport Situation

This section outlines the transport schemes that are likely to be implemented in future years that will provide a benefit and improve access to the proposed development site. It includes work proposed as part of the development as well as other committed schemes:

- Five Mile Lane improvements including Waycock Cross and Sycamore Cross junctions;
- The Pendoylan Link, to connect the M4 Junction 34 to the A48 at Sycamore Cross;
- Mitigation to walking routes to the development from Rhoose and Barry;
- Pedestrian access to bus stops on port Road, providing a safe alternative to walking on Port Road;
- Cycleways expected on the A4226, Five Mile Lane, and within Barry;
- Completion and extension of NCN88, leading to a cycle route from Bridgend to Cardiff and Newport;
- Cycleway connections within the site and connecting to external cycleways;
- Increased service frequencies for bus and rail;
- Upgrading of bus stops on Port Road;

Traffic forecasting uses the South East Wales Transport Model, which includes committed development. It is agreed that the future year traffic assessments should include the Five Mile Lane development but not the Pendoylan Link.

The suggested improvements to walking and cycling links are considered integral to delivering a sustainable development. However, this section of the TA does not provide any detail of how walking routes will be mitigated and how the improvements will be delivered. Lighting and signage should be considered. Clarification is required in discussion with TVoGC.

7 Development Travel Demand

Vehicle trip generation has been estimated using the TRICs database. The parameters used in the TRICS assessment are considered appropriate. The office component of the development is categorised as business park rather than office, which may result in a slightly lower trip rate, but is considered to best reflect the proposed land use.

It is noted that sites with high public transport use have been deselected, which is considered to be accurate and robust. This will help to ensure that a realistic proportion of public transport use is assumed. Sites with travel plans have also been excluded, this approach is assumed to have been taken to avoid double counting the vehicle reduction effects of implementing a Travel Plan.

A baseline modal share has been estimated using the neighbouring MSOA, which includes Cardiff Airport, Rhoose and the surrounding area.

The adjusted trip rates and modal share, to be achieved by the development proposals and implementing the travel plan, are considered ambitious. However, if the proposed transport improvements are delivered, together with the wider public transport strategy and development of the enterprise zone, the adjusted modal share is not considered unrealistic.

It is not clear whether the adjusted trip reduction has only been applied to commuting trips and not operational trips, which are not likely to be affected by a travel plan. This should be clarified.

8 Strategic Modelling and Transport Impact

As agreed during the scoping, the traffic impact of the development has been assessed by Norman Rourke Pryme using the SEWTM model. The 2026 future year model has been used as well as a 2029 model created by Norman Rourke Pryme by applying TEMPRO growth rates to the 2026 model.

The TA considers the impact of development traffic on surrounding highway junctions, identifying those with an increase of greater than 10\%. These junctions have then been subject to further, more detailed junction assessments. In addition to the junctions identified in the TA, it is recommended that the Sycamore Cross junction is also assessed, due to its strategic importance and the percentage increase being approximately 10%.

The assessment of Weycock Cross roundabout forecasts an operation RFC (ratio of flow to capacity) which is greater than 0.90 in both 2026 and 2029. The TA acknowledges that suitable mitigation will need to be determined and agreed with TVoGC. Consideration should be given to development phasing and conditioning appropriate levels of mitigation based on agreed thresholds.

Aside to using the SEWTM the Transport Assessment also includes a link capacity assessment for Port Road (A4226), between the site access roundabout and Weycock Cross roundabout. The link has been categorised as an Urban All-Purpose 1 road. Although the section of road is rural in feel for some of its length, the categorised road type used in the assessment is considered appropriate and provides a good indication of theoretical capacity levels.

It should be noted that although it is agreed that forecast flows for 2026 and 2029 will remain within the capacity limits, they will increase significantly, and this section of road will be at its link capacity limit. The road between the airport and Weycock Roundabout forms part of the strategic road network and mitigation measures should be considered to ensure resilience and reduce congestion.

The impact of construction traffic has not been assessed in the TA. It is agreed that due to the type of development the number of HGVs during construction is not likely to be higher than when the development is fully operational and therefore unlikely there will be any capacity issues. However, a draft construction traffic management plan should be included, or a detailed plan considered in reserved matters.

9 Transport Implementation Strategy

Section 10 of the TA sets out the transport proposals that will maximise the potential sustainable travel modes, including:

- Framework Travel Plan (FTP);
- Walking and Cycling Strategy;
- Public Transport Strategy;
- Vehicular Access Strategy; and
- Car Parking Management Plan (CPMP).

In line with TAN 18 the Transport Implementation Strategy (TIS) details the measures proposed to improve access by public transport, walking and cycling. Highlighting the opportunity to reduce the number of motorised journeys associated with the proposal. Objectives and targets relating to managing travel demand for the development have been identified. However, the infrastructure measures and financial contributions necessary to achieve them have not been made clear.

10 Summary and Conclusions

Mott MacDonald were commissioned by the Vale of Glamorgan Council to undertake a review of a Transport Assessment submitted in support of an outline planning application, for land at Model Farm, Rhoose.

The site forms part of a wider Enterprise Zone and is located adjacent to the Cardiff International Airport, approximately 1.5 km east of Rhoose and 4 km west of Barry. A mix of employment use is being proposed, including:

- B1 Office-75,890m ${ }^{2}$
- B2 General Industrial - 37,945m²
- B8 Storage and Distribution - $75,890 \mathrm{~m}^{2}$

The application is for outline planning permission, with all matters reserved except of access. The Transport Assessment is proportionate in terms of the level of detail provided. The methodology and level of assessment is considered robust.

Although subject to detail design, the Transport Assessment (TA), Travel Plan and illustrative masterplan include measures that will promote sustainability. Providing walking and cycling links to existing infrastructure and a spine road through the site that enables buses to penetrate the development.

A Draft Car Parking Management Plan (CPMP) follows the guidance set out in TVoGC's parking standards. The proposed measures and a desire to keep parking levels below the maximum standards will help to decrease the number of single occupancy vehicle trips. A full and detailed CPMP will be a reserved matter.

The impact of construction traffic has not been assessed. Given that the number of vehicle trips during construction is expected to be much less than post construction, when the site is fully developed, it is agreed that this does not need to be assessed separately. However, it is recommended that a Draft Construction Traffic Management Plan should be provided.

A Draft Framework Travel Plan has been developed and has been considered in conjunction with the TA. The travel plan will be implemented across the site and includes appropriate, targets, measures and marketing techniques to promote a sustainable travel to employees and visitors. A site-wide Travel Plan Co-ordinator will need to be appointed and at detailed design individual travel plans will need to be developed and monitored.

As a result of proposed and potential mitigation, for development related trips, the forecast change in modal share is approximately a 19% decrease in single occupancy vehicle trips compared to baseline travel patterns. This is considered to be significant. To achieve this level of shift then the parking management, public transport strategy and walking/cycling improvements will need to proportionate.

The transport issues for the development, such as potential mitigation and detailed access design, will be determined at the reserved matters and detailed design stage of the application.

An assessment of the impact of the traffic generated by the development using TRiCS and the SEWTM model of 11 junctions has been undertaken by Norman Rourke Pryme. As a result of the strategic modelling exercise, more detailed operational assessments have been undertaken at three junctions to determine the transport impact. Weycock Cross roundabout is forecast to
operate over capacity and will require mitigation. The development impact at Sycamore Cross is shown to be 10%. Due to its strategic importance, it is recommended that this junction is also subject to more detailed analysis.

The proposed development will result in a significant increase in vehicle trips on the local highway network, particularly on the section of road between Weycock Cross and the Airport. The assessment considers and identifies future improvements to public transport and walking/cycling infrastructure in principle, however, it is not clear how and when these measures will be delivered.

Mitigating measures will need to limit congestion and help to provide a more resilient strategic road network for those who will still need to travel by vehicle. To ensure and promote sustainability, it is considered that walking, cycling and public transport links to the wider key origins will need to be an integral part of the development.

It is recommended that the proposed mitigation measures identified in the TA are expanded upon, in terms of the required infrastructure and financial contributions necessary to deliver them. The mitigation measures should be agreed and conditioned by TVoGC, to secure better conditions for pedestrians, cyclists and public transport users and to encourage a change in travel choices away from the single occupancy car. In addition, consideration should be given to delivery, and how the development will be phased. Appropriate thresholds will need to be agreed, to ensure the right level of mitigation is provided as the development expands and the wider enterprise zone continues to grow.

Appendix B - Sycamore Cross Traffic Flows

SYCAMORE CROSS JUNCTION
2026 BASE

Appendix C - Sycamore Cross Signal Data

David Archibald

From:	Howells, Lee M
Sent:	18 November 2019 15:28
To:	Alex Snartt
Subject:	FW: Sycamore Cross Signals 19111810
Attachments:	5 mile lane stage times.log
Importance:	High

CAUTION: This email originated from outside of RPS.
Alex,

Please find below / attached the timings of the signals at sycamore cross as requested

Kind Regards

Lee

From: Pritchard, lap_(Capita)
Sent: 18 November 2019 15:22

Subject: RE: Sycamore Cross Signals 19111810

Hi Lee

Five Mile Lane - signal timings

Further to your e-mail of 11 November please find attached the Sycamore Cross timings MOVA log.

This has been downloaded from the controller and gives the stage times between the dates 11/11/2019 and 18/11/2019.

The printout has been simplified as much as possible, so first line reads:

11/11 8-9: $1=40 / 112=40 / 293=40 / 12 \quad 4=37 / 125=0 / 06=0 / 0$

Where:

11/11 = date $11^{\text {th }}$ November 2019
8-9 = time 08:00 to 09:00 hours
$1=40 / 11$ = stage 1 appeared 40 times with average stage length of 11 seconds
$2=40 / 12=$ stage 2 appeared 40 times with average stage length of 29 seconds
$3=40 / 12=$ stage 3 appeared 40 times with average stage length of 12 seconds
$4=37 / 12=$ stage 4 appeared 37 times with average stage length of 12 seconds
$5=0 / 0=$ stage 5 appeared 0 times with average stage length of 0 seconds
$6=0 / 0=$ stage 6 appeared 0 times with average stage length of 0 seconds.

If you have any queries please do not hesitate to contact me. I trust that this is in order.

David Archibald

From:	Howells, Lee M
Sent:	18 November 2019 15:28
To:	Alex Snartt
Subject:	FW: Sycamore Cross Signals 19111810
Attachments:	5 mile lane stage times.log
Importance:	High

CAUTION: This email originated from outside of RPS.
Alex,

Please find below / attached the timings of the signals at sycamore cross as requested

Kind Regards

Lee

From: Pritchard, lap_(Capita)
Sent: 18 November 2019 15:22

Subject: RE: Sycamore Cross Signals 19111810

Hi Lee

Five Mile Lane - signal timings

Further to your e-mail of 11 November please find attached the Sycamore Cross timings MOVA log.

This has been downloaded from the controller and gives the stage times between the dates 11/11/2019 and 18/11/2019.

The printout has been simplified as much as possible, so first line reads:

11/11 8-9: $1=40 / 112=40 / 293=40 / 12 \quad 4=37 / 125=0 / 06=0 / 0$

Where:

11/11 = date $11^{\text {th }}$ November 2019
8-9 = time 08:00 to 09:00 hours
$1=40 / 11$ = stage 1 appeared 40 times with average stage length of 11 seconds
$2=40 / 12=$ stage 2 appeared 40 times with average stage length of 29 seconds
$3=40 / 12=$ stage 3 appeared 40 times with average stage length of 12 seconds
$4=37 / 12=$ stage 4 appeared 37 times with average stage length of 12 seconds
$5=0 / 0=$ stage 5 appeared 0 times with average stage length of 0 seconds
$6=0 / 0=$ stage 6 appeared 0 times with average stage length of 0 seconds.

If you have any queries please do not hesitate to contact me. I trust that this is in order.

Commercial in Confidence

From: Howells, Lee
Sent: 11 November 2019 11:49
To: Pritchard, Ian (Capita)
Cc: Dent, John
Mark
Subject: RE: Sycamore Cross Signals 1911116
lan,

Can you please arrange ASAP as this information can then be updated with our street Lighting section who also monitor telematics

Kind Regards

Lee

From: Pritchard, Ian (Capita)

Cc: Dent, Joh
Subject: RE: Sycamore Cross stgnals 1911116

Hi Lee

I have been advised that the timings the controller is currently using would need to be downloaded from the mova unit in the controller. Are you able to do this or would you wish us to obtain them?

I look forward to hearing from you.

Many thanks

Kind regards

Ian Pritchard

Principal Engineer - Infrastructure Projects
Real Estate and Infrastructure
02920803626 | 07860948752 | Capita St David's House Pascal Close St Mellons Cardiff CF3 0LW
capitaproperty.co.uk

Commercial in Confidence

From: Howells, Lee M ,
Sent: 11 November 2019 09:45
To: Pritchard, Ian (Capita
Cc: Dent, John
Subject: RE: Sycamore Cross Signals

Ian / Dent,

Is it possible that we can have the latest signal timings for sycamore cross which will form part of the technical submission / modelling for the Model Farm Development.

Kind Regards

Lee

From: Alex Snartt
Sent: 08 November 2019 14:10
To: Howells, Lee M
Cc: David Archibald
Subject: Sycamore Cross Signais

Hi Lee,

Good to talk on the phone a moment ago. As mentioned, due to the timescales involved, and given that the signal timings are currently being optimised on the ground, we will run a LINSIG model with our own signal timings, estimated by ourselves and by LINSIG. This will allow us to assess the impact of development in a similar way to what we would do with the signal timings data if / when we receive them.

Could you confirm that you are happy for us to progress on that basis please.
Thanks and kind regards,

Alex Snartt BA (Hons)
Graduate Transport Planner
RPPS | Consulting UK \& Ireland
260 Park Avenue
Almondsbury
Bristol
BS32 4SY. United Kingdon
T +441454853000
D 01454279590
E alex.snart(2)rpsgroup.com
rpsqroup.com

rps

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only.

Internet communications are not secure and RPS is not responsible for their abuse by third parties, any alteration or corruption in transmission or for any loss or damage caused by a virus or by any other means.

RPS Group Plc, company number: 2087786 (England). Registered office: 20 Western Avenue Milton Park Abingdon Oxfordshire OX14 4SH.
RPS Group Plc web link: http://www.rpsgroup.com

This message has been scanned by Capita's systems, but if you believe it to be spam then click here to report this email as spam.

This email is security checked and subject to the disclaimer on web-page: http://www.capita.co.uk/emaildisclaimer.aspx

11/11 8-9: $1=40 / 112=40 / 293=40 / 124=37 / 125=0 / 06=0 / 0$
11/11 9-12: $1=191 / 112=145 / 123=167 / 94=123 / 95=0 / 06=0 / 0$ 11/11 12-15: $1=185 / 132=161 / 103=167 / 104=107 / 85=0 / 06=0 / 0$ 11/11 15-16: $1=51 / 152=49 / 133=51 / 114=40 / 85=0 / 06=0 / 0$ 11/11 16-17: $1=41 / 222=40 / 153=40 / 144=38 / 125=0 / 06=0 / 0$ 11/11 17-18: $1=38 / 242=39 / 173=39 / 144=32 / 145=0 / 06=0 / 0$ 11/11 18-19: $1=55 / 192=43 / 113=53 / 104=35 / 95=0 / 06=0 / 0$ 11/11 19-20: $1=70 / 172=47 / 83=56 / 84=29 / 85=0 / 06=1 / 5$ 12/11 6-7: $1=79 / 122=47 / 93=57 / 94=30 / 85=0 / 06=4 / 11$ 12/11 7-8: $1=45 / 102=41 / 243=43 / 134=33 / 135=0 / 06=0 / 0$ 12/11 8-9: $1=39 / 112=39 / 303=38 / 114=37 / 135=0 / 06=0 / 0$ 12/11 9-12: $1=177 / 112=150 / 133=160 / 94=133 / 85=0 / 06=0 / 0$ 12/11 12-15: $1=186 / 132=152 / 113=161 / 104=105 / 85=0 / 06=2 / 3$ 12/11 15-16: $1=53 / 152=44 / 143=50 / 104=38 / 105=0 / 06=0 / 0$ 12/11 16-17: $1=44 / 182=43 / 163=44 / 134=41 / 115=0 / 06=0 / 0$ 12/11 17-18: $1=43 / 202=43 / 163=42 / 13 \quad 4=37 / 95=0 / 06=0 / 0$ 12/11 19-20: $1=76 / 142=52 / 83=53 / 84=37 / 75=0 / 06=1 / 3$ 13/11 6-7: $1=81 / 132=45 / 93=63 / 84=28 / 85=0 / 06=3 / 3$ 13/11 7-8: $1=42 / 102=41 / 263=42 / 124=37 / 125=0 / 06=0 / 0$ 13/11 8-9: $1=35 / 112=35 / 343=35 / 124=33 / 175=0 / 06=0 / 0$ 13/11 9-12: $1=173 / 122=149 / 143=156 / 104=121 / 85=0 / 06=0 / 0$ 13/11 12-15: $1=174 / 152=152 / 113=155 / 114=111 / 85=0 / 06=0 / 0$ 13/11 15-16: $1=53 / 152=46 / 133=53 / 104=37 / 95=0 / 06=0 / 0$ 13/11 16-17: $1=41 / 212=40 / 183=40 / 144=35 / 115=0 / 06=0 / 0$ 13/11 17-18: $1=43 / 202=43 / 163=43 / 12 \quad 4=39 / 95=0 / 06=0 / 0$ 13/11 18-19: $1=53 / 182=47 / 113=51 / 94=41 / 75=0 / 06=0 / 0$ 13/11 19-20: $1=74 / 142=49 / 93=56 / 94=31 / 75=0 / 06=1 / 6$ 14/11 6-7: $1=79 / 132=46 / 93=61 / 84=29 / 75=0 / 06=2 / 9$ 14/11 7-8: $1=47 / 112=43 / 223=45 / 114=39 / 125=0 / 06=0 / 0$ 14/11 8-9: $1=39 / 102=39 / 283=40 / 124=39 / 125=0 / 06=0 / 0$ 14/11 9-12: $1=168 / 112=145 / 163=156 / 94=120 / 95=0 / 06=0 / 0$ 14/11 12-15: $1=183 / 142=140 / 133=160 / 104=108 / 85=0 / 06=1 / 3$ 14/11 15-16: $1=53 / 162=41 / 143=51 / 114=40 / 95=0 / 06=0 / 0$ 14/11 16-17: $1=42 / 212=43 / 163=40 / 134=34 / 115=0 / 06=0 / 0$ 14/11 17-18: $1=45 / 192=44 / 163=46 / 124=41 / 85=0 / 06=0 / 0$ 14/11 18-19: $1=58 / 162=47 / 113=51 / 114=34 / 85=0 / 06=0 / 0$ 14/11 19-20: 1=72/ $142=51 / 93=55 / 94=32 / 85=0 / 06=1 / 3$ 15/11 6-7: 1=69/172=47/93=51/94=25/85=0/06=4/8

15/11 7-8: $1=49 / 112=43 / 223=47 / 114=37 / 105=0 / 06=0 / 0$ 15/11 8-9: $1=44 / 102=43 / 223=43 / 124=41 / 105=0 / 06=0 / 0$ 15/11 9-12: $1=178 / 112=141 / 153=154 / 104=121 / 95=0 / 06=0 / 0$ 15/11 12-15: $1=164 / 142=149 / 133=152 / 104=117 / 85=1 / 126=0 / 0$ 15/11 15-16: $1=45 / 192=43 / 153=44 / 134=42 / 105=0 / 06=0 / 0$ 15/11 16-17: $1=40 / 212=39 / 173=40 / 144=39 / 115=0 / 06=0 / 0$ 15/11 17-18: $1=49 / 192=47 / 133=46 / 114=39 / 95=0 / 06=0 / 0$ 15/11 18-19: $1=63 / 152=43 / 103=57 / 94=43 / 75=0 / 06=0 / 0$ 15/11 19-20: $1=75 / 132=50 / 93=57 / 94=33 / 85=0 / 06=1 / 3$ 16/11 6-7: $1=76 / 172=26 / 73=34 / 84=20 / 85=0 / 06=17 / 38$ 16/11 7-8: $1=88 / 142=56 / 83=46 / 8 \quad 4=20 / 75=0 / 06=4 / 11$ 16/11 8-9: $1=82 / 132=48 / 93=57 / 84=33 / 75=0 / 06=3 / 4$ 16/11 9-12: $1=179 / 122=139 / 123=168 / 104=120 / 8 \quad 5=4 / 126=0 / 0$ 16/11 12-15: $1=159 / 152=144 / 133=149 / 114=116 / 95=0 / 06=0 / 0$ 16/11 15-16: $1=60 / 132=52 / 113=55 / 104=39 / 85=0 / 06=0 / 0$ 16/11 16-17: $1=56 / 152=52 / 113=53 / 104=34 / 85=1 / 126=0 / 0$ 16/11 17-18: $1=60 / 162=50 / 113=52 / 104=32 / 85=0 / 06=0 / 0$ 16/11 18-19: $1=71 / 132=47 / 103=57 / 84=38 / 75=0 / 06=0 / 0$ 16/11 19-20: 1=78/ $162=51 / 83=49 / 84=28 / 75=0 / 06=3 / 6$ 17/11 9-12: $1=207 / 112=153 / 113=171 / 94=114 / 85=1 / 126=0 / 0$ 17/11 12-15: $1=166 / 142=147 / 123=153 / 104=123 / 85=1 / 126=0 / 0$ 17/11 15-16: $1=60 / 132=51 / 113=57 / 104=34 / 85=0 / 06=0 / 0$ 17/11 16-17: $1=62 / 132=50 / 133=53 / 104=38 / 75=0 / 06=0 / 0$ 17/11 17-18: $1=70 / 112=51 / 103=60 / 9 \quad 4=34 / 75=0 / 06=1 / 10$ 17/11 18-19: $1=81 / 122=54 / 83=58 / 84=25 / 85=0 / 06=0 / 0$ 17/11 19-20: $1=84 / 152=47 / 83=49 / 84=23 / 75=0 / 06=4 / 8$ 18/11 6-7: $1=87 / 122=48 / 83=60 / 94=26 / 75=0 / 06=1 / 3$ 18/11 7-8: $1=45 / 102=43 / 243=45 / 114=38 / 105=0 / 06=0 / 0$ 18/11 8-9: $1=41 / 102=41 / 263=41 / 12 \quad 4=40 / 11 \quad 5=0 / 06=0 / 0$ 18/11 9-12: $1=177 / 112=155 / 133=160 / 104=124 / 85=0 / 06=0 / 0$

Administration

-General Specifications			Customer Order No.		
Customer Name	VALE OF GLAMORGAN				
Intersection/ General Description	SYCAMORE CROSSROADS A48-PENDOYLAN		Controller/ Serial Number		
			S.T.S. IEM Number	gg0002	Issue
Controller	- New	Modification	Equipment Installation by	SIEMENS	
Area Specifications/ Customer Drawings			Slot Cutting by		
Specification Section			Civil Works by		
Contract/Tender Ref.			Customer's Engineer		
Quotation No.			Telephone Number		
Works Order No.					

-Signal Company Use Only				
Signal Engineer Nick Rule	(IF PROM Label as >) PROM Number 16700		PROM Variant 199	
	Configuration Check Value 2E 2B318D			
Controller Options				
Hardware ST900 ELV	Firmware Type and Issue PB801 ISS5	Other Options		
[ST950/ST900/ST750 Series Cabinet Options				
Cabinet/Rack Cab	Kit Type Options \bigcirc UK-Std \bigcirc O Non-UK ○		\bigcirc	
CabinetRack Variant Gre	Cuckoo Options None		Gemini Unit Fitted \square	

Phases, Stages and Streams

Phases, Stages and Streams
Add/Delete/Insert Streams:

Facilities/Modes Enabled and Mode Priority Levels

Facilities				
-UTC	\square Master Time Clock	V Lamp Monitoring	\square Extend All Red	\square Non-UK
\square Serial/Internal UTMC OTU	\square Holiday Clock	\square RED Lamp Monitoring	\square Speed Measurement	\square Fail to Part Time
\square Free-standing OTU	\square FT To Current MAX	\square Pelican/Puffin/Toucan	\square Ripple Change	\square Fail To Hardware Flashing
\square Integral TC12 OTU	\square Linked Fixed Time	\square Standalone Manual	\square London IMU	
\square Serial MOVA				\square Download To Level 3
9 Starting Intergreen				

Mode Priority	
	$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
\square Part Time	$\bigcirc \bigcirc \bigcirc$
\square Emergency Vehicles	$\bigcirc \bigcirc \bigcirc$
\square Hury Call	$\bigcirc \bigcirc \bigcirc$
\square	$\bigcirc \bigcirc \bigcirc$
\square Priority Vehicle	$\bigcirc \bigcirc \bigcirc$
\square Manual Control	$\bigcirc \bigcirc \bigcirc$
\square Manual Step On	$\bigcirc \bigcirc 00$
\square Selected FT or VA or	$\bigcirc \bigcirc \bigcirc$
\square UTC	$\bigcirc \bigcirc \bigcirc$
\square	$\bigcirc \bigcirc \bigcirc$
\square CLF (Non-Base Time	
\square CLF (Base Time)	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc 0000000$
\square Vehicle Actuated	$\bigcirc \bigcirc \bigcirc$
\checkmark Fixed Time	$\bigcirc \bigcirc \bigcirc$

$\left[\begin{array}{cccc|}\hline \text { Configuration Complexity } & & \\ \text { O Low } & \text { O Medium } & \text { O High } & \text { O Maximum } \\ \hline\end{array}\right.$

standardPB801.8df
Default PROM data file

Correspondence Monitoring to inc.

$\left[\begin{array}{cccc|}\hline \text { Flash Rate (ms) } & & \\ 400 & \text { Off } & 400 & \text { On }\end{array}\right.$

Phases in Stages

Phases

Works Order :
EM Number : gg0002
Engineer : Nick Rule
Intersection : SYCAMORE CROSSROADS A48-PENDOYLAN

Stages in Streams

[Stages in Streams

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase or Stage to revert to in
 absence of | \square | | | | | | | | Note: For a Stand-Alone
 Stream, the reversion
 must be to All Red stage |
| or Traffic stage/phase to | | | | | | | | | |

Standalone Sedeatyian

Phase Type and Conditions

Phase Type and Conditions								
	\bigcirc PhasesAto P	\bigcirc	Manual Output Allocation \square					
		Type		Term. Assoc. Type Phase		No. of Drive Outputs		
Phase			Type			"R"	"A"	"G"
A	A48 EASTBOUND	0-UKTraffic	0	0 -		2	2	2
B	A48 WESTBOUND	0-UKTraffic	0	0 -		2	2	2
C	A48 EASTBOUND INNER	0-UKTraffic	0	0 -		1	1	1
D	A48 WESTBOUND INNER	0-UKTraffic	0	0 -		1	1	1
E	A48 EASTBOUND INNER RIGHT TURN	0-UKTraffic	0	0 -		1	1	1
F	A48 WESTBOUND INNER RIGHTTURN	0-UKTraffic	0	0		1	1	1
G	PENDOYLAN	0-UKTraffic	0	0 -		1	1	1
H	FIVE MILE LANE L+R	0-UKTraffic	0	0 -		1	1	1
1	A48 Westbound Left Turn	0-UKTraffic	0	0 -		1	1	1
J	PEDS X FIVE MILELANE	1 - UK Far Side Pedestrian	0	0 -		1	1	2
K	PEDS XA48 WESTBOUND	1 - UK Far Side Pedestrian	0	0 -		1	1	2
L	PEDS XA48 EASTBOUND	1 - UK Far Side Pedestrian	0	0 -		1	1	2
M	PEDS XPENDOYLAN	1 - UK Far Side Pedestrian	0	0		1	1	2
N	Dummy All Red	2 - UK GreenArrow	0	0 -				

1)App Types: $0=$ Always Appears, 1 =Appears if dem'd prior to interstage, $2=$ If dem'd, 3 = If dem'd before end of window time
2) Term Types: $0=$ Term's at end of stage, $1=$ Term's when Assoc phase gains R.O.W, $2=$ Term's when Assoc phase loses R.O.W.
3) The H/W Fail Flash fiel ds are for information only on all but ST900ELV Controllers. For other controllers, physical switches or links (etc.) select which aspects flash and these need to be set up manually.

Opposing and Conflicting Phases

$\left[\begin{array}{llllllllll}\text { Select Stream(s) } & \text { To Configure } \\ \text { OAll } & \text { O0 } & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc\end{array}\right]$
\checkmark Amber Conflict Monitoring
To Phase

Phase Minimums, Maximums, Extensions, Ped Leaving Periods

Note: For Standalone Streams see Help for use of Max Sets.

Phase Intergreen Times

| O All | O 0 | \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PI, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below.

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
A						6	6			9	9	9	9	3
B					6			6		9	9	9	9	3
C								6		9	9	9	9	3
D							6			9	9	9	9	3
E		6						6	6	9	9	9	9	3
F	6						6			9	9	9	9	3
G	6			6		6				9	9	9	9	3
H		6	6		6					9	9	9	9	3
1					6					9	9	9	9	3
J	7	7	7	7	7	7	7	7	7					3
K	7	7	7	7	7	7	7	7	7					3
L	7	7	7	7	7	7	7	7	7					3
M	7	7	7	7	7	7	7	7	7					3
N	2	2	2	2	2	2	2	2	2	2	2	2	2	

Intergreen Handset Limits

To Phase

	A	A	B	C	D	E	F	G	H	1	J	K	L	M	N
							5	5			5	5	5	5	3
	B					5			5		5	5	5	5	3
	C										5	5	5	5	3
	D							5			5	5	5	5	3
	E		5							5	5	5	5	5	3
	F	5						5			5	5	5	5	3
	G	5			5		5				5	5	5	5	3
	H		5								5	5	5	5	3
	1					5					5				3
	J	5	5	5	5	5	5	5	5	5					3
	K	5	5	5	5	5	5	5	5						3
	L	5	5	5	5	5	5	5	5						3
	M	5	5	5	5	5	5	5	5						3
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	

Phase Timing Handset Ranges

VA Demand and Extend Definitions

[Start-up Vehicle Responsive Demands

-Demands Inserted When Leaving Manual and Fixed Time Modes

Unlatched Demands that Start Max Timers
$\begin{array}{rr}\text { A } \square & \text { B } \square \\ \square & \square\end{array}$
C D \square $\mathrm{E} \square$
\square $\begin{array}{rrr}F \square & G \square & H \square \\ \square & \square & \square\end{array}$ ∇
\square J ∇ K \square L $\quad \mathrm{M} \nabla \mathrm{V}$ V $\square \quad \square$ \square

Revertive Phase Demands
A
A
Q

$R \quad S$

P
 A2 B2 F2

Stage Internal Demands/Pedestrian Window Times

Win															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0										
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Phase Delays

\bigcirc Phase Delays $0-29$			Phase Delays 30-59		O Phase Delays 60-89			Phase Delays 90-119	
No.	Delay Phase	On Change from Stage	To Stage	By (X) Seconds	No.	Delay Phase	On Change from Stage	$\begin{aligned} & \text { To } \\ & \text { Stage } \end{aligned}$	$\mathrm{By}(\mathrm{X})$ Seconds
0	A	0	1	4	15	C	1	0	
1	A	0	2	4	16	c	1	3	3
2	B	0	1	4	17	c	1	4	3
3	G	0	4	4	18	c	1	5	3
4	H	0	3	4	19	c	2	0	4
5	H	0	4	4	20	c	2	3	4
6	1	0	1	4	21	c	2	4	4
7	1	0	3	4	22	c	2	5	4
8	1	0	4	4	23	D	1	0	3
9	D	2	1	0	24	D	1	2	3
10				0	25	D	1	4	3
11				0	26	D	1	5	3
12				0	27	E	2	0	4
13				0	28	E	2	1	4
14				0	29	E	2	3	4

Phase Delays

$\bigcirc \mathrm{Ph}$	Delays 0	\bigcirc Phase Delays 30-59			O Phase Delays 60-89			O Phase Delays 90-119	
No.	Delay Phase	On Change from Stage	$\begin{aligned} & \text { To } \\ & \text { Stage } \end{aligned}$	By (X) Seconds	No.	Delay Phase	On Change from Stage	To Stage	By (X) Seconds
30	E	2	4	4	45				0
31	E	2	5	4	46				0
32	F	3	0	4	47				0
33	F	3	1	4	48				0
34	F	3	2	4	49				0
35	F	3	4	0	50				0
36	F	3	5	4	51				0
37				0	52				0
38				0	53				0
39				0	54				0
40				0	55				0
41				0	56				0
42				0	57				0
43				0	58				0
44				0	59				0

Works Order
EM Number : gg0002

Fixed Time

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
Demand	\square	V	\checkmark	\checkmark	\checkmark	V	\square	\checkmark	\square							
Extend	\square	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark	\checkmark	\square						
Demand	Q	R	S	T ${ }^{\square}$	U	V	W	X	Y	Z	A2	B2	$\mathrm{C} 2$	D2	E2 \square	F2
Extend	\square															

CLF - Base Time

UTC General Data

UTC General Data

-Type of UTC
© 106
O 316

Integral OTUAddress
Number of Control Words

2
Number of Reply WordsController to respond to TC bit.Introduction of UTC to be disabled by Priority a
\square Non UTC RTC synchronisation input
-RTC Synchronisation Times

Clock Synchronise Time (UTC TS input)	
Day	Time
Saturday	$00: 00: 00$

$\left[\begin{array}{ll}\text { Clock Confirm Time (UTC RT output) } \\ \text { Day } & \text { Time } \\ \hline \text { Saturday } & 00: 00: 00 \\ \hline\end{array}\right.$

UTC Control and Reply Data Format

UTC Stage and Mode Data Definitions

[UTC Stage and Mode Data Definitions

Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	$\left[\begin{array}{l}\text { Mode Data Definitions } \\ \text { Manual Mode Operative: }\end{array}\right.$
0	F6	G6		16				$\square \mathrm{G} 1 / \mathrm{G} 2 \quad \square \mathrm{RR} \quad \square$
1	F1	G1		17				Manual Mode Selected:
2	F2	G2		18				$\square \mathrm{G} 1 / \mathrm{G} 2 \quad \square \mathrm{RR} \quad \square$
3	F3	G3		19				No Lamp Power, or Lamps Off due to
4	F4	G4		20				RLM or Part Time:
5	F5	G5		21				
6				22				Detector Fault:
7				23				$\square \square^{\square} \quad \square \mathrm{DF}$
8				24				Normal NOT selected on the
9				25				Manual Panel: \square G1/G2 RR \square
10				26				
11				27				RR Button Selected:
12				28				$\square \mathrm{G} 1 / \mathrm{G} 2 \quad \square \mathrm{RR} \quad \square$
13				29				If UTC Reply Confirms are required for
14				30				a Controller Fault (CF) OR for separate MC and RR replies, Conditioning must
15				31				be used.

UTC and MOVA Detectors

MTC - Time Switch Parameters

MTC - Time Switch Parameters Array

Parameters

Works Order

MTC - Day Type

MTC - Timetable

-MTC - Timetable						
No.		Time	-ViewTimetable Settings			
	$\begin{aligned} & \text { Day } \\ & \text { Type } \end{aligned}$		Description	Function Code	Plan/ Parameter	
0	9	07:00:00	INTRODUCE MAXSETA	2	0	Function Codes:
1	9	09:00:00	INTRODUCE MAXSETB	2	1	0 = Isolate From CLF
2	9	15:00:00	INTRODUCE MAXSET C	2	2	1 = Introduce a CLF Plan
3	9	18:30:00	INTRODUCE MAXSETD	2	3	$2=$ Introduce a Parameter
4	0	07:00:00	INTRODUCE MAXSETA	2	0	(Combination of event switches)
5	0	18:30:00	INTRODUCE MAXSETD	2	3	
6	1	07:00:00	INTRODUCE MAXSETA	2	0	3 = Selects an Individual event switch to be set
7	1	18:30:00	INTRODUCE MAXSETD	2	3	4 = Selects an Individual
8	0			0	0	event switch to be cleared.
9	0			0	0	
10	0			0	0	
11	0			0	0	
12	0			0	0	
13	0			0	0	
14	0			0	0	
15	0			0	0	

LMU - General

LMU - General

Lamp Monitoring - LMU Voltage	
O	
\bigcirc	$\bigcirc 48$

Integral LMU Onboard Sensors

Note: A $\left(^{*}\right)$ character next to a sensor number indicates that the sensor would also be available on the External sensors screen. Please be sure you wish to use these sensors here, as they will then become unavailable for
Dnnulntan, Cinno

Integral LMU Onboard Sensors

Note : A (*) character next to a sensor number indic ates that the sensor would also be available on the External sensors screen. Please be sure you wish to use these sensors here, as they will then become unavailable for Dnnulntan, Cimen

Integral LMU External Sensors for Regulatory Signs

-Integral LMU External Sensors for Regulatory Signs
$\left[\begin{array}{ll|}\text { External Sensors (1) } \\ \text { Sensor } & \text { Sensor Type } \\ 48 & \text { Regulatory Sign } \\ 47 & \text { Regulatory Sign } \\ 46 & \text { Regulatory Sign } \\ 45 & \text { Regulatory Sign } \\ & \\ \hline\end{array}\right.$
$\left[\begin{array}{ll}\text { External Sensors (4) } \\ \text { Sensor } & \text { Sensor Type } \\ \\ \\ \\ & \\ \end{array}\right]$

External Sensors (2)	
Sensor	Sensor Type
44	Regulatory Sign
43	Regulatory Sign
42	Regulatory Sign
41	Regulatory Sign

$\left[\begin{array}{ll}\text { External } & \text { Sensors (5) } \\ \text { Sensor } & \text { Sensor Type } \\ \\ \\ \\ \end{array}\right.$
$\left[\begin{array}{ll}\text { External } & \text { Sensors (3) } \\ \text { Sensor } & \text { Sensor Type } \\ \\ \\ \\ \\ \hline\end{array}\right.$
$\left[\begin{array}{ll}\text { External } & \text { Sensors (6) } \\ \text { Sensor } & \text { Sensor Type } \\ \\ \\ \\ \\ \\ \end{array}\right.$

Note: Sensors which have been used as Onboard sensors will not be available here.

Works Order
EM Number : gg0002
Engineer : Nick Rule
Intersection : SYCAMORE CROSSROADS A48-PENDOYLAN
LMU Sensor Load Types

LMU Sensor Load Types					
$\begin{gathered} \text { Screen Select- } \\ 1 \quad \text { of } 2 \end{gathered}$					
Sensor	Phase	Sensor	LED	Load Type	LLF Profile
1	A	As Seq.		1: Siemens Helios ELV	
2	B	As Seq.		1: Siemens Helios ELV	
3	C	As Seq.		1: Siemens Helios ELV	
4	D	As Seq.		1: Siemens Helios ELV	
5	E	As Seq.		1: Siemens Helios ELV	
6	F	As Seq.		1: Siemens Helios ELV	
7	G	As Seq.		1: Siemens Helios ELV	
8	H	As Seq.		1: Siemens Helios ELV	
9	1	As Seq.		1: Siemens Helios ELV	
10	J	R,G		1: Siemens Helios ELV	
11	J	Wait		5: Siemens LED Wait	
12	K	R,G		1: Siemens Helios ELV	
13	K	Wait		5: Siemens LED Wait	
14	L	R,G		1: Siemens Helios ELV	
15	L	Wait		5: Siemens LED Wait	
16	M	R,G		1: Siemens Helios ELV	

Works Order
EM Number : gg0002
Engineer : Nick Rule
Intersection : SYCAMORE CROSSROADS A48-PENDOYLAN
LMU Sensor Load Types

Sensor	Phase	Sensor
17	M	Wait
41	N/A	Regulatory Sign
42	N/A	Regulatory Sign
43	N/A	Regulatory Sign
44	N/A	Regulatory Sign
45	N/A	Regulatory Sign
46	N/A	Regulatory Sign
47	N/A	Regulatory Sign
48	N/A	Regulatory Sign

LED

Load Type
5: Siemens LED Wait
4: Siemens ELV Regulatory Sign

RLM Additional Intergreens

RLM Phase Inhibits

Phases Inhibited/Blacked-Out

Manual Panel

Works Order
EM Number : gg0002

Special Conditioning

LAMPS OFF REPLY TO THE OMU (LAMPS OFF RELAY MUST BE FITTED TO ENABLE THIS TO WORK)
; $==2$
LMPON.SWLMPS./(FLF17) = LAMPSON ; IF LAMPS ARE SWITCHED OFF OR FAIL SEND REPLY BY

MANUAL PANEL
CCTO3 $=$ MIL22
$($ MODE0 EQL $<5>)=$ MIL0 7
$($ MODE0 EQL $<6>)=$ MIL17
; EX19 AFTER THE CALL DELAY LIGHTS AUX 1 LED
; HURRY CALL LED LIT WHEN RUNNING H/CALL MODE
; HIGHER PRIORITY LED LIT UNDER MOVA CONTROL
; V/A DETECTION
; =============
ASL6 $=$ +LCPHA \quad; ASL 6 DEMAND AND EXTEND PHASE A
ASL6_EXT: $=+\mathrm{EXOA}$
$*=+E X C A$
$(\mathrm{BSL15}+\mathrm{BSL1} 6+\mathrm{BSL} 17)=+$ LCPHB \quad BSL15,16,17 DEMAND AND EXTEND PHASE B
BSL15_EXT: $=+$ EXOB
$*=+\mathrm{EXCB}$
BSL16_EXT: $=+$ EXOB
$*=+\mathrm{EXCB}$
BSL17 EXT: $=+$ EXOB
$*=+\mathrm{EXCB}$

STAGE 1
; =======
/(STAGE1) : : = .EXOC ; STAGE 1 NOT TO BE EXTENDED BY C Or D's DETECTION
$\star=. \mathrm{EXCC}$

* $=$.EXOD
* $=$. EXCD

STAGE 2
; =======
$/($ STAGE2 $):=$. EXOC ; STAGE 2 NOT TO BE EXTENDED BY PHASE C $*=. \operatorname{EXCC}$
; V/A HURRY CALL
==============
(MODEO EQL<2>).CNDTMA4 = ROUGH2 ; IN V/A EX19 ACTIVE AFTER CALL DELAY ; HURRY CALLS STAGE 2 ; DCL3 = 2 - EX19 (DEFAULT SET TO 255)
; MOVA HURRY CALL
; ================
IFT CCTOO./(1SCRTO)./CNDTMA1 THN RUN<0>
; CX18 AFTER CALL DELAY AND PREVENT TIMER NOT RUNNING ; START MOVADET PULSE TIMER

END
CCTOO = 1SCRT0 ; CALL DELAY FLAG

CNDTMA0.CFE45 = MOVADET45
; MOVADET PULSE TIMER ACTIVE SETS MOVADET45, ENABLED BY

Works Order
EM Number : gg0002

Special Conditioning

```
; CFE45 = 1
```

IFT ((CCTO1./(1SCRT1)) + (CCTO2./(1SCRT2)))./CNDTMA3 THN ; DX22 OR DX 23 AFTER CALL DELAY AND PREVENT TIMER NOT
RUN $<2>$; RUNNING START MOVADET PULSE TIMER
RUN<3> ; START INHIBIT TIMER
END
CCTO1 $=1$ SCRT1 ; CALL DELAY
$\mathrm{CCTO} 2=1 \mathrm{SCRT} 2$
; CALL DELAY FLAG
CNDTMA2.CFE46= MOVADET46
IFT CCTO3./(1SCRT3)./CNDTMA5 THN
RUN < 4 >
RUN<5>
; EXI9 AFTER CALL DELAY
; START INHIBIT TIMER
END
$\mathrm{CCTO} 3=1 \mathrm{SCRT} 3$
CNDTMA4.CFE47 = MOVADET47
IFT CCTO4./(1SCRT4)./CNDTMA7 THN
RUN < 6 >
RUN<7>
End
ССТО4 = 1SCRT4
CNDTMA6.CFE48 = MOVADET48
; CALL DELAY FLAG
; MOVADET PULSE tIMER ACTIVE SETS MOVADET47 ; ENABLED BY CFE47 =1
; FX24 AFTER CALL DELAY AND PREVENT TIMER NOT RUNNING ; START MOVADET PULSE TIMER
; START INHIBIT TIMER
; CALL DELAY FLAG
; MOVADET PULSE TIMER ACTIVE SETS MOVADET48
; ENABLED BY CFE48=1
; MOVA BUS PRIORITY INPUTS

IFT BUS-EB./1SCRT5./CNDTMA21 THN RUN<20>
; BUS INPUT BUS-EB JUST GONE ACTIVE AND INHIBIT
RUN $<21>$
; TIME NOT RUNNING, START MOVADET PULSE TIMER
; START INIHIBIT TIMER
END
$\mathrm{BUS}-\mathrm{EB}=1 \mathrm{SCRT} 5$
CNDTMA20.CFE51 = MOVADET51

IFT BUS-WB./1SCRT6./CNDTMA23 THN RUN<22> RUN<23>
END
$\mathrm{BUS}-\mathrm{WB}=1 \mathrm{SCRT} 6$
CNDTMA22.CFE52 = MOVADET52
; BUS-WB FLAG
; MOVADET PULSE TIMER ACTIVE SETS MOVADET52
; ENABLED BY CFE52 =1
IFT BUS-EBRT./1SCRT7./CNDTMA25 THN RUN<24>
; BUS INPUT BUS-EBRT JUST GONE ACTIVE AND INHIBIT
RUN<25>
; TIME NOT RUNNING, START MOVADET PULSE TIMER
; START INIHIBIT TIMER
END
BUS-EBRT $=1 \mathrm{SCRT} 7$
CNDTMA24.CFE53 = MOVADET53
; BUS-EBRT FLAG
; MOVADET PULSE TIMER ACTIVE SETS MOVADET53
; ENABLED BY CFE53 =1
; BUS INPUT BUS-WBRT JUST GONE ACTIVE AND INHIBIT ; TIME NOT RUNNING, START MOVADET PULSE TIMER

Works Order
EM Number : gg0002

Special Conditioning

RUN<27>
END
BUS-WBRT $=1$ SCRT8
CNDTMA26.CFE54 = MOVADET54

IFT BUS-NB./1SCRT9./CNDTMA29 THN RUN<28>
RUN<29>
END
$\mathrm{BUS}-\mathrm{NB}=1 \mathrm{SCRT} 9$
CNDTMA28.CFE55 = MOVADET55
; PHASE CONFIRMS TO MOVA
; $=====================$
$/($ PHASEA $)=G A$
$/($ PHASEC $)=G C$
$/($ PHASED $)=G D$
$/($ PHASEH $)=G H$
$/($ PHASEI $)=G I$
; WAIT CONFIRMS TO MOVA
; $======================$

PRSLMPAJ. / (LMUINHJ) =MOVADET39 PRSLMPAK. / (LMUINHK) =MOVADET40 PRSLMPAL. / (LMUINHL) =MOVADET41 PRSLMPAM. / (LMUINHM) =MOVADET 42
; ADDITIONAL MOVA DETETECTORS
; $==========================$
STAGE3:.DX22 = MOVADET22
*. DX23 $=$ MOVADET23

PHASEE.ASL6 = MOVADET49
PHASEF.BSL17 = MOVADET50
IFT STAGE3. PHASEH./PREVH THN RUN<30>
END
CNDTMA30.CFE56 = MOVADET56

```
; START INIHIBIT TIMER
; BUS-WBRT FLAG
    ; MOVADET PULSE TIMER ACTIVE SETS MOVADET54
; ENABLED BY CFE54=1
    ; BUS INPUT BUS-NB JUST GONE ACTIVE AND INHIBIT
; TIME NOT RUNNING, START MOVADET PULSE TIMER
; START INIHIBIT TIMER
    ; BUS-NB FLAG
    ; MOVADET PULSE TIMER ACTIVE SETS MOVADET55
ENABLED BY CFE55=1
; PHASE CONFIRMS

WAIIS LIT FOR PHSE J
; WAITS LIT FOR PHSE K
; WAITS LIT FOR PHSE L
; WAITS LIT FOR PHSE M
; MOVADET HOLD TIMER ACTIVE SETS MOVA DET 56 ; ENABLED BY CFF56 = 1

MOVA CRB
;

IFT (PRSLMPRA+PRSLMPAA+PRSLMPGA) THN ; MIN LAMPS OFF TIMER RUN<94>
END
IFT NOT (MODEO EQL<6>). NOT (CNDTMA95). SSNRM THN ; NOT IN MOVA MODE AND IN NORMAL RUN TIMER RUN<95>
END
IFT CNDTER95+((PRVMODO EQL<6>). NOT (MODE0 EQL<6>)) THN
LOD<10> 2SCRTCH31
TRUE=2SCRT247

Works Order
EM Number : gg0002

\section*{Special Conditioning}
\((\) MODE0 EQL<2>)./(LCPHE+UCPHE+LCST2+UCST2) \(=\) PRVST2 ; PREVENT STAGE 2 IF NO DEMAND FOR E
(MODE0 EQL<2>)./(LCPHF+UCPHF+LCPHH+UCPHH+LCST3+UCST3) = PRVST3 ; PREVENT STAGE 3 IF NO DEMAND FOR F
\((\) MODE0 EQL \(<2>) . /(L C P H G+U C P H G+L C S T 4+U C S T 4)=\) PRVST4 ; PREVENT STAGE 4 IF NO DEMAND FOR G
- STAGE 3 DEMANDS
; \(===============\)
/(NXTSTGO EQL<3>.STAGE3.NXTSTGO EQL<4>.STAGE4).(HIN33+HX35+HSL37).CFE3 = +LCST3
INTELLIGENT PHASE DELAYS
- \(=========================\)
(NXTSTGO EQL<0>+NXTSTGO EQL<3>+NXTSTGO EQL<4>+NXTSTGO EQL<5>) \$
.\(/(\) CNDTMA \(9+\) CNDTMA10). PHASEC \(=1\) AUXCMDC 4
IFT PHASEA.(ASL5) THN
    RUN<9>
END
(NXTSTGO EQL<0>+NXTSTGO EQL<1>+NXTSTGO EQL<3>+NXTSTGO EQL<4>+NXTSTGO EQL<5>) \$
. / (CNDTMA9 + CNDTER10) . PHASEE = 1AUXCMDE 4
IFT PHASEA.(ASL6) THN
    RUN<10>
END
(NXTSTGO EQL<0>+NXTSTGO EQL<2>+NXTSTGO EQL<4>+NXTSTGO EQL<5>) \$
.\(/(\) CNDTMA11). PHASED \(=1\) AUXCMDD4
IFT PHASEB.(BSL15+BSL16) THN
    RUN<11>
End
(NXTSTGO EQL \(<0>+\) NXTSTGO EQL<1>+NXTSTGO EQL<2>+NXTSTGO EQL<4>+NXTSTGO EQL<5>) \$
./(CNDTMA12). PHASEF = 1AUXCMDF4
IFT PHASEH. (HSL37) THN
    RUN<12>
end
2 Step revert, Stage 1 then stage 0
; =================
; REVERT TO STAGE 1
VRDMNDE+VRDMNDF+VRDMNDG+VRDMNDH+VRDMNDJ+VRDMNDK+VRDMNDL+VRDMNDM \(=2\) SCRT0 \(\quad ; \operatorname{DEMANDS~OUTSIDE~} 1\)
\(\mathrm{EXTAE}+\mathrm{EXOE}+\mathrm{EXTAF}+\mathrm{EXOF}+E X T A G+E X O G+E X T A H+E X O H=+2 S C R T 0 \quad\); EXTENSIONS OUTSIDE 1
GIN28_EXT+HIN33_EXT+HIN34_EXT = +2SCRT0
                                    ; IN LOOPS OUTSIDE 1

Works Order
EM Number : gg0002

\section*{Special Conditioning}
\(\mathrm{LCST} 2+\mathrm{UCST} 2+\mathrm{LCST} 3+\mathrm{UCST} 3+\mathrm{LCST} 4+\mathrm{UCST} 4+\mathrm{LCST} 5+\mathrm{UCST} 5=+2 S C R T 0\) \(/((\mathrm{MODEO} \mathrm{EQL}<2>)+(\mathrm{MODEO} \mathrm{EQL}<6>))=+2 \mathrm{SCRT} 0\)

MINE+MINF+MING+MINH+MINJ+MINK+MINL+MINM \(=2 \mathrm{SCRT1}\)

IFT 2SCRTO THN
RUN<16>
TRUE \(=2 \mathrm{SCRT} 2\)
END
IFT / (2SCRT0 + 2SCRT1 + CNDTMA16) THN
IFT 2SCRT2 THN
RUN<17>
FALSE \(=2 S C R T 2\)
END
\((\) MODE 0 EQL \(<2>) \cdot(\) STAGE \(2+S T A G E 3+S T A G E 4+S T A G E 5)=+U C S T 1\)
END
CNDTMA17 = MOVADET43
; Revert to all-red secondly
VRDMNDA+VRDMNDB+VRDMNDC+VRDMNDD+VRDMNDI \(=+2 S C R T 0\)
\(E X T A A+E X O A+E X T A B+E X O B+E X T A C+E X O C+E X T A D+E X O D+E X T A I+E X O I=+2 S C R T O\) AIN1 EXT+BIN8 EXT+BIN9 EXT \(=+2\) SCRT0
\(\operatorname{LCST} \overline{1}+\mathrm{UCST} 1={ }^{-}+2 \mathrm{SCRT} 0\)
( (NXTSTG0 EQL<1>)./STAGE1) +STAGE2+STAGE3+STAGE4+STAGE5 = +2SCRT0 MINA+MINB+MINC+MIND+MINI \(=+2 S C R T 1\)

IFT 2SCRTO THN
RUN<18>
TRUE \(=2\) SCRT3
END
IFT /(2SCRT0 + 2SCRT1 + CNDTMA18) THN
IFT 2SCRT3 THN
RUN<19>
FALSE \(=2\) SCRT3
END
/CNDTMA18. (MODEO EQL \(<2>\) ) \(=+\mathrm{UCST0}\)
END
CNDTMA19 = MOVADET44
```

 ; STAGE DEMANDS OUTSIDE 1
 ; REVERT IN MOVA OR VA ONLY
 ; MIN GREEN TIMES TO EXPIRE
 ; BEFORE REVERT CAN TRIGGER
 ; RUN DELAY TIMER WHILE INPUTS
; ACTIVE
; DELAY TIMER EXPIRED
; START MOVADET PULSE TIMER
; REQUEST STAGE 1
; PULSE TIMER ACTIVE SETS MOVADET

```
        ; NO DEMAND IN STAGE 1
            ; NO EXTENSIONS IN STAGE 1
        ; NO IN LOOPS IN STAGE 1
    ; NO DEMANDS FOR STAGE 1
            ; NO GOING TO STAGE 1
    ; MIN GREEN TIMES TO EXPIRE
; RUN DELAY TIMER

\section*{Special Conditioning Timers}
-Special Conditioning Timers

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No & Value & Min & Max & 200 ms & Description & No & Value & Min & Max & 200 ms & Description \\
\hline 0 & 2 & 0 & 255 & \(\square\) & O/P PULSE MOVADET45 & 16 & 0 & 0 & 255 & \(\square\) & Delayed Revert to stage 1 \\
\hline 1 & 60 & 0 & 255 & \(\square\) & MOVADET45 PREVENT TIMER & 17 & 1 & 0 & 255 & \(\square\) & MOVADET43 pulse \\
\hline 2 & 2 & 0 & 255 & \(\square\) & O/P PULSE MOVADE T46 & 18 & 20 & 0 & 255 & \(\square\) & Delayed Revert to All Red \\
\hline 3 & 60 & 0 & 255 & \(\square\) & MOVADET46 PREVENT TIMER & 19 & 1 & 0 & 255 & \(\square\) & MOVADET44 pulse \\
\hline 4 & 2 & 0 & 255 & \(\square\) & O/P PULSE MOVADE T47 & 20 & 2 & 0 & 255 & \(\square\) & BUS-EB pulse MOVAdet51 \\
\hline 5 & 60 & 0 & 255 & \(\square\) & MOVADET47 PREVENTTIMER & 21 & 60 & 0 & 255 & \(\square\) & MOVADET51 INHIBIT \\
\hline 6 & 2 & 0 & 255 & \(\square\) & O/P PULSE MOVADET48 & 22 & 2 & 0 & 255 & \(\square\) & BUS-WB PULSE MOVADET52 \\
\hline 7 & 60 & 0 & 255 & \(\square\) & MOVADET48 PREVENT TIMER & 23 & 60 & 0 & 255 & \(\square\) & MOVADET52 INHIBIT \\
\hline 8 & & 0 & 255 & \(\square\) & & 24 & 2 & 0 & 255 & \(\square\) & BUS-EBRTPULSE MOVADET53 \\
\hline 9 & 2.8 & 0 & 31.8 & \(\checkmark\) & Phase C intelligent phase delay & 25 & 60 & 0 & 255 & \(\square\) & MOVADET53 INHIBIT \\
\hline 10 & 3.8 & 0 & 31.8 & \(\checkmark\) & Phase E intelligent phase delay & 26 & 2 & 0 & 255 & \(\square\) & BUS-WBRT PULSE \\
\hline 11 & 2.8 & 0 & 31.8 & \(\checkmark\) & Phase D intelligent phase delay & 27 & 60 & 0 & 255 & \(\square\) & MOVADET54 INHIBIT \\
\hline 12 & 3.8 & 0 & 31.8 & \(\checkmark\) & Phase F intelligent phase delay & 28 & 2 & 0 & 255 & \(\square\) & BUS-NB PULSE MOVADET55 \\
\hline 13 & & 0 & 255 & \(\square\) & & 29 & 60 & 0 & 255 & \(\square\) & MOVADET55 INHIBIT \\
\hline 14 & & 0 & 255 & \(\square\) & & 30 & 5 & 0 & 255 & \(\square\) & MOVADET56 HOLD \\
\hline 15 & & 0 & 255 & \(\square\) & & 31 & & 0 & 255 & \(\square\) & \\
\hline
\end{tabular}

\section*{Special Conditioning Timers}
-Special Conditioning Timers

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No & Value & Min & Max & 200ms & Description & No & Value & Min & Max & 200 ms & Description \\
\hline 64 & & 0 & 255 & \(\square\) & & 80 & & 0 & 255 & \(\square\) & \\
\hline 65 & & 0 & 255 & \(\square\) & & 81 & & 0 & 255 & \(\square\) & \\
\hline 66 & & 0 & 255 & \(\square\) & & 82 & & 0 & 255 & \(\square\) & \\
\hline 67 & & 0 & 255 & \(\square\) & & 83 & & 0 & 255 & \(\square\) & \\
\hline 68 & & 0 & 255 & \(\square\) & & 84 & & 0 & 255 & \(\square\) & \\
\hline 69 & & 0 & 255 & \(\square\) & & 85 & & 0 & 255 & \(\square\) & \\
\hline 70 & & 0 & 255 & \(\square\) & & 86 & & 0 & 255 & \(\square\) & \\
\hline 71 & & 0 & 255 & \(\square\) & & 87 & & 0 & 255 & \(\square\) & \\
\hline 72 & & 0 & 255 & \(\square\) & & 88 & & 0 & 255 & \(\square\) & \\
\hline 73 & & 0 & 255 & \(\square\) & & 89 & & 0 & 255 & \(\square\) & \\
\hline 74 & & 0 & 255 & \(\square\) & & 90 & & 0 & 255 & \(\square\) & \\
\hline 75 & & 0 & 255 & \(\square\) & & 91 & & 0 & 255 & \(\square\) & \\
\hline 76 & & 0 & 255 & \(\square\) & & 92 & & 0 & 255 & \(\square\) & \\
\hline 77 & & 0 & 255 & \(\square\) & & 93 & & 0 & 255 & \(\square\) & \\
\hline 78 & & 0 & 255 & \(\square\) & & 94 & 1 & 1 & 5 & \(\square\) & MIN LAMPS OFF TIMER \\
\hline 79 & & 0 & 255 & \(\square\) & & 95 & 120 & 0 & 255 & \(\square\) & MOVACRB TOGGLE BIT \\
\hline
\end{tabular}

Works Order
EM Number : gg0002
Engineer : Nick Rule
Intersection : SYCAMORE CROSSROADS A48-PENDOYLAN

\section*{Special Instructions}

\author{
EPR199 \\ Card Type \\ Intelligent Backplane 16/0 \\ Intelligent Backplane 16/0 \\ Intelligent Backplane 16/0 \\ Intelligent Backplane 16/0 \\ Intelligent Backplane \(16 / 0\) \\ Intelligent Backplane 16/0 \\ Serial IO 24/4 \\ Serial IO 24/4 \\ Serial IO 24/4 \\ Serial IO 24/4
}

CPU
\begin{tabular}{lll} 
Rack Posn & Addr. & Port \\
Rack & 01 & 0 \\
Rack & 01 & 1 \\
Rack & 02 & 2 \\
Rack & 02 & 3 \\
Rack & 03 & 4 \\
Rack & 03 & 5 \\
I I/O1 & 04 & 6 \\
I I/O1 & 04 & 7 \\
I I/O1 & 04 & 8 \\
I I/O1 & 04 & 9
\end{tabular}
\begin{tabular}{lll} 
Type & Line & \multicolumn{1}{l}{ Term Posn } \\
I & \(000-007\) & 2 LT1 \\
I & \(008-015\) & 2 \\
LT1 \\
I & \(016-023\) & 2 \\
LT2 \\
I & \(024-031\) & 2 \\
LT2 \\
I & \(032-039\) & 2 \\
LT3 \\
I & \(040-047\) & 2 \\
LT3 \\
I & \(048-055\) & 1 \\
I/O1 \\
I & \(056-063\) & 1 \\
I/O1 \\
I & \(064-071\) & 1 \\
I/O1 \\
O & \(072-075\) & 1 \\
I/O1
\end{tabular}

\section*{Works Order}

\section*{Special Instructions}

ST900 ELV CONTROLLER ITEMS LIST SHEET 1 (*I*L*)


Note 1:
Please refer to special instruction pages for additional information on items marked with an '*'.

\section*{Works Order}

\section*{Special Instructions}

ST900 ELV CONTROLLER ITEMS LIST SHEET 2 (*I*L*)


Works Order

\section*{Special Instructions}

SIEMENS ST900 ELV INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET

[Template - Internal Detectors.txt Issue 1.0]
SIEMENS ST900 ELV INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET


Works Order

\section*{Special Instructions}

SIEMENS ST900 ELV INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET


\section*{Call Cancel}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Call Cancel} \\
\hline Unit No. & \begin{tabular}{l}
Input \\
Name
\end{tabular} & Call Delay & Cancel Delay & \begin{tabular}{l}
Phase Demanded \\
(Unlatched Demand)
\end{tabular} \\
\hline 0 & CX18 & 255 & 2 & \\
\hline 1 & DX22 & 255 & 2 & \\
\hline 2 & DX23 & 255 & 2 & \\
\hline 3 & EX19 & 255 & 2 & \\
\hline 4 & FX24 & 255 & 2 & \\
\hline 5 & & 0 & 0 & \\
\hline 6 & & 0 & 0 & \\
\hline 7 & & 0 & 0 & \\
\hline
\end{tabular}

\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|}
\hline Add \\
Delete \\
Move & Clear Used By & Move to/from backplane \\
\hline Manual Map Optimisation
\end{tabular}

\section*{Inputs and Outputs}

Add

Delete \(\square\) Clear Used By Move toffrom backplane

Manual Map Optimisation

\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|c|c|}
\hline Add & Delete & Move & Clear Used By & Move to/from backplane \\
\hline & & & Clear & Move (0frombackplane \\
\hline \multicolumn{2}{|l|}{Manual Map Optimisation} & & & \\
\hline
\end{tabular}

\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|c|c|}
\hline Add & Delete & Move & Clear Used By & Move to/from backplane \\
\hline \multicolumn{5}{|l|}{Manual Map Optimisation} \\
\hline
\end{tabular}

\section*{Inputs and Outputs}



\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|}
\hline Add \\
Delete & Move & Clear Used By \\
Move tofrom backplane \\
\hline Manual Map Optimisation
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline & Port Number \& Type & -Card Type \& Address \\
\hline Enable Signal Required Check boxes
Manual Allocation & \begin{tabular}{l}
Inputs Outputs \\
Port: \(\square\) \\
Inputs \& Outputs
\end{tabular} & Serial IO 24/4 Card Address: 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{array}{|l}
\text { DET } \\
\text { No }
\end{array}
\] & \[
\begin{aligned}
& \text { Bit } \\
& \text { No }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Type } \\
& \text { I or O }
\end{aligned}
\] & Name & Req'd & BP & & U/D Misc & DFM & DFM Group & Ext time & \begin{tabular}{l}
Used By \\
PhsUTCSDE Pri HC CC IG UD LRT
\end{tabular} & Term Block & Line No \\
\hline \(\bigcirc\) & 48 & 0 & 1 & PEDJ1 & \(\checkmark\) & & & \(\square \square\) & Y & 1 & 0.0 & \(\checkmark \square \square \square \square \square \square \square \square\) & 1//01 & I-0 \\
\hline \(\bigcirc\) & 49 & 1 & I & OCDJ1 & & \(\square\) & \(\checkmark\) & \(\square \square\) & N & & 0.4 & \(\square \square \square \square \square \square \square \square \square\) & 1//01 & I-1 \\
\hline \(\bigcirc\) & 50 & 2 & 1 & PEDJ2 & \(\checkmark\) & \(\square\) & & \(\square \square\) & Y & 1 & 0.0 & \(\checkmark \square \square \square \square \square \square \square \square\) & 1//01 & l-2 \\
\hline \(\bigcirc\) & 51 & 3 & 1 & OCDJ2 & & & & \(\square \square\) & N & & 0.4 & \(\square \square \square \square \square \square \square \square \square\) & 1/O1 & I-3 \\
\hline \(\bigcirc\) & 52 & 4 & 1 & PEDK1 & \(\checkmark\) & & & \(\square \square\) & Y & 1 & 0.0 & V \(\square \square \square \square \square \square \square \square\) & 1/O1 & I-4 \\
\hline \(\bigcirc\) & 53 & 5 & 1 & OCDK1 & & \(\square\) & V & \(\square \square\) & N & & 0.4 & \(\square \square \square \square \square \square \square \square \square\) & 1/O1 & I-5 \\
\hline \(\bigcirc\) & 54 & 6 & 1 & PEDK2 & & \(\square\) & \(\square \square\) & \(\square \square\) & Y & 1 & 0.0 & \(\checkmark \square \square \square \square \square \square \square\) & 1//O1 & I-6 \\
\hline O & 55 & 7 & I & OCDK2 & & \(\square\) & V & \(\square\) & & & 0.4 & \(\square \square \square \square \square \square \square \square\) & 1//O1 & I-7 \\
\hline
\end{tabular}
Add \begin{tabular}{l} 
Delete \\
Move Clear Used By Move toffrom backplane \\
\hline
\end{tabular}

Manual Map Optimisation

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\left[\begin{array}{ll}\text { Port Number \& Type } & \\ \text { Port: } & 7 \\ & \text { O Inputs O Outputs } \\ & \text { O Inputs \& Outputs }\end{array}\right.\)}} & Card Type \& Address \\
\hline Enable Signal Required Check boxes
Manual Allocation & & & Serial IO 24/4 Card Address: 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Add & Delete & Move & Clear Used By & Move toffrom backplane \\
\hline
\end{tabular}

\footnotetext{
Manual Map Optimisation
}

\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|}
\hline Add \\
Delete \\
Move & Clear Used By & Move to/from backplane \\
\hline Manual Map Optimisation
\end{tabular}

\section*{Inputs and Outputs}

\begin{tabular}{|c|c|c|c|c|}
\hline Add & Delete & Move & Clear Used By & Move tofrom backplane \\
\hline
\end{tabular}

Manual Map Optimisation

\section*{Aspect Drives (ELV Controllers)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{-Aspect Drives (ELV Controllers)} \\
\hline \multicolumn{5}{|l|}{\(\square\) Card Reversed} & \multicolumn{2}{|r|}{HPU Connection} & , 1 \\
\hline \multicolumn{8}{|l|}{-Aspect Drive Configuration for LSLS 1 of 2 cards (Cabinet 1)} \\
\hline Output & Phase & Aspect & Use & Output & Phase & Aspect & Use \\
\hline 32 & A & Red & Phase & 16 & D & Amber & Phase \\
\hline 31 & A & Red & Phase & 15 & D & Green & Phase \\
\hline 30 & A & Amber & Phase & 14 & E & Red & Phase \\
\hline 29 & A & Amber & Phase & 13 & E & Amber & Phase \\
\hline 28 & A & Green & Phase & 12 & E & Green & Phase \\
\hline 27 & A & Green & Phase & 11 & F & Red & Phase \\
\hline 26 & B & Red & Phase & 10 & F & Amber & Phase \\
\hline 25 & B & Red & Phase & 9 & F & Green & Phase \\
\hline 24 & B & Amber & Phase & 8 & G & Red & Phase \\
\hline 23 & B & Amber & Phase & 7 & G & Amber & Phase \\
\hline 22 & B & Green & Phase & 6 & G & Green & Phase \\
\hline 21 & B & Green & Phase & 5 & H & Red & Phase \\
\hline 20 & C & Red & Phase & 4 & H & Amber & Phase \\
\hline 19 & C & Amber & Phase & 3 & H & Green & Phase \\
\hline 18 & C & Green & Phase & 2 & I & Red & Phase \\
\hline 17 & D & Red & Phase & 1 & I & Amber & Phase \\
\hline
\end{tabular}

\section*{Aspect Drives (ELV Controllers)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{-Aspect Drives (ELV Controllers)} \\
\hline \multicolumn{5}{|l|}{\(\square\) Card Reversed} & \multicolumn{2}{|r|}{HPU Connection} & n 1 \\
\hline \multicolumn{8}{|l|}{Aspect Drive Configuration for LSLS 2 of 2 cards (Cabinet 1)} \\
\hline Output & Phase & Aspect & Use & Output & Phase & Aspect & Use \\
\hline 32 & I & Green & Phase & 16 & M & Green & Phase \\
\hline 31 & J & Red & Phase & 15 & N/A & N/A & N/A \\
\hline 30 & J & Amber & Phase & 14 & N/A & N/A & N/A \\
\hline 29 & J & Green & Phase & 13 & N/A & N/A & N/A \\
\hline 28 & J & Green & Phase & 12 & N/A & N/A & N/A \\
\hline 27 & K & Red & Phase & 11 & N/A & N/A & N/A \\
\hline 26 & K & Amber & Phase & 10 & N/A & N/A & N/A \\
\hline 25 & K & Green & Phase & 9 & N/A & N/A & N/A \\
\hline 24 & K & Green & Phase & 8 & N/A & N/A & N/A \\
\hline 23 & L & Red & Phase & 7 & N/A & N/A & N/A \\
\hline 22 & L & Amber & Phase & 6 & N/A & N/A & N/A \\
\hline 21 & L & Green & Phase & 5 & N/A & N/A & N/A \\
\hline 20 & L & Green & Phase & 4 & N/A & N/A & N/A \\
\hline 19 & M & Red & Phase & 3 & N/A & N/A & N/A \\
\hline 18 & M & Amber & Phase & 2 & N/A & N/A & N/A \\
\hline 17 & M & Green & Phase & 1 & N/A & N/A & N/A \\
\hline
\end{tabular}


\section*{Index}
General Junction Data
1.1 Administration
1.2 Phases, Stages and Streams
1.3 Facilities/Modes Enabled and Mode Priority Levels
1.4 Phases in Stages
1.5 Stages in Streams
Phases
2.1 Phase Type and Conditions
2.2 Opposing and Conflicting Phases
2.3 Timings
2.3.1 Phase Minimums, Maximums, Extensions, Ped Leaving Periods
2.3.2 Phase Intergreen Times
2.3.3 Intergreen Handset Limits
2.3.4 Phase Timing Handset Ranges
2.4 VA Demand and Extend Definitions
2.5 Phase Internal/Revertive Demands
Stage Movements
3.1 Stages - Prohibited, Alternative, Ignored Moves (No configuration data to print)
3.2 Stage Internal Demands/Pedestrian Window Times
3.3 Phase Delays
Modes and Facilities - Detailed
4.1 Fixed Time
4.2 Cableless Linking
4.2.1 CLF - Plan(s) (No configuration data to print)
4.2.2 CLF - Base Time
4.2.3 CLF - Demand Dependent Moves (No configuration data to print)
4.3 UTC and MOVA
4.3.1 UTC General Data
4.3.2 UTC Control and Reply Data Format
4.3.3 UTC Data Definitions
4.3.3.1 UTC Phase Demand and Extend Definitions (No configuration data to print)
4.3.3.2 UTC Stage and Mode Data Definitions
4.3.3.3 UTC Demand Dependent Forces (No configuration data to print)
4.3.4 UTC and MOVA Detectors
4.4 Master Time Clock
4.4.1 MTC - Time Switch Parameters
4.4.2 MTC - Time Switch Parameters Array
4.4.3 MTC - Day Type
4.4.4 MTC - Timetable
4.5 Integral Lamp Monitoring
4.5.1 LMU - General
4.5.2 Integral LMU Onboard Sensors
4.5.3 Integral LMU External Sensors for Regulatory Signs
4.5.4 LMU Sensor Load Types
4.5.5 RLM Additional Intergreens
4.5.6 RLM Phase Inhibits
4.6 Hurry Call
4.7 Manual
4.7.1 Manual Panel
4.7.2 Manual Mode - Optional Phases Appearance (No configuration data to print)
Conditioning Data
5.1 Special Conditioning
5.2 Special Conditioning Timers
5.3 Fault Log Flags (No configuration data to print)
Special Instructions
I/O
7.1 Call Cancel
7.2 Inputs and Outputs
7.3 Aspect Drives (ELV Controllers)
7.4 I/O - DFM Group Timings

\section*{Appendix D - Sycamore Cross LinSig Modelling Output \\ Reports}

Full Input Data And Results
Full Input Data And Results

\section*{User and Project Details}
\begin{tabular}{|l|l|}
\hline Project: & JNY9624 - Model Farm \\
\hline Title: & As Built Junction Layout \& Signal Timings \\
\hline Location: & \\
\hline File name: & JNY9624 - Sycamore Cross Junction - Revised v3.Isg3x \\
\hline Author: & P Warner \\
\hline Company: & RPS \\
\hline Address: & \\
\hline Notes: & \\
\hline
\end{tabular}

\section*{Network Layout Diagram}


\section*{Phase Diagram}


\section*{Phase Input Data}
\begin{tabular}{|c|c|c|c|c|}
\hline Phase Name & Phase Type & Assoc. Phase & Street Min & Cont Min \\
\hline A & Traffic & & 7 & 7 \\
\hline B & Traffic & & 7 & 7 \\
\hline C & Traffic & & 7 & 7 \\
\hline D & Traffic & & 7 & 7 \\
\hline E & Traffic & & 7 & 7 \\
\hline F & Traffic & & 7 & 7 \\
\hline G & Traffic & & 7 & 7 \\
\hline H & Traffic & & 7 & 7 \\
\hline I & Traffic & & 7 & 7 \\
\hline J & Pedestrian & & 7 & 17 \\
\hline K & Pedestrian & & 7 & 7 \\
\hline L & Pedestrian & & 7 & 7 \\
\hline M & Pedestrian & & & \\
\hline
\end{tabular}

Phase Intergreens Matrix


\section*{Phases in Stage}
\begin{tabular}{|c|l|}
\hline Stage No. & Phases in Stage \\
\hline 1 & A B C D I \\
\hline 2 & A C E \\
3 & D F H I \\
\hline 4 & GHI \\
\hline
\end{tabular}

\section*{Stage Diagram}


\section*{Phase Delays}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Term. Stage & Start Stage & Phase & Type & Value & Cont value \\
\hline
\end{tabular}
There are no Phase Delays defined

Prohibited Stage Change


Junction: A48 / A4226 Sycamore Cross Junction - Cardiff
There are no Opposed Lanes in this Junction

Full Input Data And Results
Lane Input Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Type & Phases & Start Disp & End Disp. & Physical Length (PCU) & Sat Flow Type & Def User Saturation Flow (PCU/Hr) & Lane Width (m) & Gradient & Nearside Lane & Turns & Turning Radius (m) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 } \\
\text { (Northbound @ } \\
\text { A48)) }
\end{gathered}
\]} & \multirow{2}{*}{U} & \multirow{2}{*}{H} & \multirow{2}{*}{2} & \multirow{2}{*}{3} & \multirow{2}{*}{7.7} & \multirow{2}{*}{Geom} & \multirow{2}{*}{-} & \multirow{2}{*}{3.65} & \multirow{2}{*}{0.00} & \multirow{2}{*}{Y} & Arm 4 Right & Inf \\
\hline & & & & & & & & & & & \[
\begin{gathered}
\text { Arm } \\
14 \text { Left }
\end{gathered}
\] & 11.00 \\
\hline \(1 / 2\)
(A4226
(Northbound @
A48)) & U & H & 2 & 3 & 7.7 & Geom & - & 3.65 & 0.00 & Y & Arm 4 Right & Inf \\
\hline \(2 / 1\)
(A48
(Westbound @
A4226)) & U & 1 & 2 & 3 & 14.3 & Geom & - & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 \\
\hline 2/2
(A48
(Westbound @
A4226)) & U & B & 2 & 3 & 14.3 & Geom & - & 3.65 & 0.00 & \(N\) & \[
\begin{gathered}
\text { Arm } \\
14 \\
\text { Ahead }
\end{gathered}
\] & Inf \\
\hline \(2 / 3\)
(A48
(Westbound @
A4226)) & U & B & 2 & 3 & 14.3 & Geom & - & 3.65 & 0.00 & N & \[
\begin{gathered}
\text { Arm } \\
14 \\
\text { Ahead }
\end{gathered}
\] & Inf \\
\hline \(2 / 4\)
(A48
(Westbound @
A4226)) & U & B & 2 & 3 & 4.9 & Geom & - & 3.65 & 0.00 & N & \[
\begin{gathered}
\text { Arm } \\
14 \\
\text { Ahead }
\end{gathered}
\] & Inf \\
\hline \begin{tabular}{l}
\[
3 / 1
\]
(A4226 \\
(Southbound Exit))
\end{tabular} & U & & 2 & 3 & 60.0 & Inf & - & - & - & - & - & - \\
\hline \(4 / 1\)
(A48
(Eastbound
Exit)) & U & & 2 & 3 & 17.4 & Geom & - & 3.65 & 0.00 & Y & & \multirow[b]{2}{*}{-} \\
\hline \(4 / 2\)
(A48
(Eastbound
Exit)) & U & & 2 & 3 & 60.0 & Inf & - & - & - & - & - & \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 } \\
\text { (Eastbound @ } \\
\text { A4226)) }
\end{gathered}
\] & U & C & 2 & 3 & 7.3 & Geom & - & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 4 \\
Ahead
\end{tabular} & Inf \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 } \\
\text { (Eastbound @ } \\
\text { A4226)) }
\end{gathered}
\] & U & E & 2 & 3 & 7.1 & Geom & - & 3.65 & 0.00 & N & Arm 3 Right & 12.00 \\
\hline \begin{tabular}{l}
6/1 \\
(A4226 \\
(Northbound Approach))
\end{tabular} & U & & 2 & 3 & 17.4 & Geom & - & 3.65 & 0.00 & Y & Arm 1 Ahead & Inf \\
\hline \(7 / 1\)
(A48
(Westbound)) & U & & 2 & 3 & 17.4 & Geom & - & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/1
(A48
(Eastbound @
Pendoylan
Exit)) & U & A & 2 & 3 & 4.3 & Geom & - & 3.65 & 0.00 & Y & \[
\begin{gathered}
\text { Arm } \\
12 \text { Left }
\end{gathered}
\] & 15.30 \\
\hline \(8 / 2\)
(A48
(Eastbound @
Pendoylan
Exit)) & U & A & 2 & 3 & 12.5 & Geom & - & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf \\
\hline 8/3
(A48
(Eastbound @
Pendoylan
Exit)) & U & A & 2 & 3 & 12.5 & Geom & - & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf \\
\hline \(9 / 1\)
(A48
(Eastbound)) & U & & 2 & 3 & 17.4 & Geom & - & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 8 \\
Ahead
\end{tabular} & Inf \\
\hline \begin{tabular}{l}
10/1 \\
(A48 \\
(Westbound Exit))
\end{tabular} & U & & 2 & 3 & 60.0 & Inf & - & - & - & - & - & - \\
\hline \(11 / 1\)
(A48
(Westbound
from
Pondoylen)) & U & & 2 & 3 & 60.0 & Inf & - & - & - & - & - & - \\
\hline \(11 / 2\)
(A48
(Westbound
from
Pondoylen)) & U & & 2 & 3 & 60.0 & Inf & - & - & - & - & - & - \\
\hline \begin{tabular}{l}
12/1 \\
(Northbound to Pendoylan)
\end{tabular} & U & & 2 & 3 & 34.8 & Geom & - & 3.65 & 0.00 & Y & & \\
\hline \begin{tabular}{l}
13/1 \\
(Southbound from Pendoylan)
\end{tabular} & U & G & 2 & 3 & 3.8 & Geom & - & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 \\
\hline \begin{tabular}{l}
13/2 \\
(Southbound from Pendoylan)
\end{tabular} & U & G & 2 & 3 & 17.4 & Geom & - & 3.65 & 0.00 & Y & Arm 11 Right & Inf \\
\hline \begin{tabular}{l}
14/1 \\
(A48 \\
(Westbound @ Pendoylan Exit))
\end{tabular} & U & D & 2 & 3 & 8.0 & Geom & - & 3.65 & 0.00 & Y & Arm 11 Ahead & Inf \\
\hline \begin{tabular}{l}
14/2 \\
(A48 \\
(Westbound @ Pendoylan Exit))
\end{tabular} & U & D & 2 & 3 & 8.0 & Geom & - & 3.65 & 0.00 & N & \[
\begin{gathered}
\text { Arm } \\
11 \\
\text { Ahead }
\end{gathered}
\] & Inf \\
\hline \begin{tabular}{l}
14/3 \\
(A48 \\
(Westbound @ Pendoylan Exit))
\end{tabular} & U & F & 2 & 3 & 8.0 & Geom & - & 3.65 & 0.00 & N & Arm 12 Right & 7.00 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Traffic Flow Groups}
\begin{tabular}{|c|c|c|c|c|}
\hline Flow Group & Start Time & End Time & Duration & Formula \\
\hline 1: '2026 AM Base' & \(07: 45\) & \(08: 45\) & \(01: 00\) & \\
\hline 2: '2026 PM Base' & \(16: 30\) & \(17: 30\) & \(01: 00\) & \\
\hline 3: '2029 AM Base' & \(07: 45\) & \(08: 45\) & \(01: 00\) & \\
\hline 4: '2029 PM Base' & \(16: 30\) & \(17: 30\) & \(01: 00\) & \\
\hline 5: '2026 AM Base + Dev' & \(07: 45\) & \(08: 45\) & \(01: 00\) & \\
\hline 6: '2026 PM Base + Dev' & \(16: 30\) & \(17: 30\) & \(01: 00\) & \\
\hline 7: '2029 AM Base + Dev' & \(07: 45\) & \(08: 45\) & \(01: 00\) & \\
\hline 8: '2029 PM Base + Dev' & \(16: 30\) & \(17: 30\) & \(01: 00\) & \\
\hline
\end{tabular}

Scenario 1: '2026 AM Peak Base' (FG1: '2026 AM Base', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{} & \multicolumn{7}{|c|}{ Destination } \\
\hline \multirow{9}{*}{ Origin } & & A & B & C & D & Tot. \\
\cline { 2 - 7 } & A & 0 & 300 & 37 & 615 & 952 \\
\cline { 2 - 7 } & B & 383 & 0 & 30 & 505 & 918 \\
\cline { 2 - 7 } & C & 24 & 17 & 0 & 65 & 106 \\
\cline { 2 - 7 } & D & 374 & 259 & 102 & 0 & 735 \\
\cline { 2 - 7 } & Tot. & 781 & 576 & 169 & 1185 & 2711 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 1: \\
2026 AM Peak Base
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 426 \\
\hline 1/2 & 526 \\
\hline 2/1 & 374 \\
\hline 2/2 & 122 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 239(\text { In }) \\
& 137 \text { (Out) }
\end{aligned}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 102 \\
\hline 3/1 & 781 \\
\hline 4/1 & 659 \\
\hline 4/2 & 526 \\
\hline 5/1 & 570 \\
\hline 5/2 & 407 \\
\hline 6/1 & 952 \\
\hline 7/1 & 735 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 30 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
535 \text { (In) } \\
505 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 383 \\
\hline 9/1 & 918 \\
\hline 10/1 & 576 \\
\hline 11/1 & 251 \\
\hline 11/2 & 325 \\
\hline 12/1 & 169 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 89 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 106(In) } \\
& \text { 17(Out) }
\end{aligned}
\] \\
\hline 14/1 & 251 \\
\hline 14/2 & 308 \\
\hline 14/3 & 139 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 20.9 \% & \multirow[b]{2}{*}{1787} & \multirow[b]{2}{*}{1787} \\
\hline & & & & Arm 14 Left & 11.00 & 79.1 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 2: '2026 PM Peak Base' (FG2: '2026 PM Base', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired
Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Destination} \\
\hline \multirow{6}{*}{Origin} & & A & B & C & D & Tot. \\
\hline & A & 0 & 390 & 28 & 467 & 885 \\
\hline & B & 333 & 0 & 18 & 222 & 573 \\
\hline & C & 43 & 23 & 0 & 91 & 157 \\
\hline & D & 634 & 564 & 109 & 0 & 1307 \\
\hline & Tot. & 1010 & 977 & 155 & 780 & 2922 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 2: \\
2026 PM Peak Base
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 418 \\
\hline 1/2 & 467 \\
\hline 2/1 & 634 \\
\hline 2/2 & 297 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
376 \text { (In) } \\
267 \text { (Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 109 \\
\hline 3/1 & 1010 \\
\hline 4/1 & 313 \\
\hline 4/2 & 467 \\
\hline 5/1 & 313 \\
\hline 5/2 & 376 \\
\hline 6/1 & 885 \\
\hline 7/1 & 1307 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 18 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
240(\text { In }) \\
\text { 222(Out) }
\end{gathered}
\] \\
\hline 8/3 & 333 \\
\hline 9/1 & 573 \\
\hline 10/1 & 977 \\
\hline 11/1 & 453 \\
\hline 11/2 & 524 \\
\hline 12/1 & 155 \\
\hline 13/1 (short) & 134 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 157(In) } \\
& \text { 23(Out) }
\end{aligned}
\] \\
\hline 14/1 & 453 \\
\hline 14/2 & 501 \\
\hline 14/3 & 137 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{1/1
(A4226 (Northbound @ A48))} & \multirow{2}{*}{3.65} & \multirow{2}{*}{0.00} & \multirow{2}{*}{Y} & Arm 4 Right & Inf & 0.0 \% & \multirow{2}{*}{1742} & \multirow{2}{*}{1742} \\
\hline & & & & Arm 14 Left & 11.00 & 100.0\% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
2 / 1 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
2 / 2 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 14 Ahead & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline 3/1
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline 6/1
(A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline (A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound
Exit)) & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(8 / 3\)
(A48 (Eastbound
Exit)) Pendoylan & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
10 / 1 \\
\text { (A48 (Westbound Exit) Lane 1) }
\end{gathered}
\] & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 3: '2029 AM Peak Base' (FG3: '2029 AM Base', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Destination} \\
\hline \multirow{6}{*}{Origin} & & A & B & C & D & Tot. \\
\hline & A & 0 & 302 & 38 & 617 & 957 \\
\hline & B & 391 & 0 & 30 & 507 & 928 \\
\hline & C & 25 & 22 & 0 & 65 & 112 \\
\hline & D & 386 & 259 & 105 & 0 & 750 \\
\hline & Tot. & 802 & 583 & 173 & 1189 & 2747 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & Scenario 3: 2029 AM Peak Base \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 430 \\
\hline 1/2 & 527 \\
\hline 2/1 & 386 \\
\hline 2/2 & 122 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
\text { 242(In) } \\
\text { 137(Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 105 \\
\hline 3/1 & 802 \\
\hline 4/1 & 662 \\
\hline 4/2 & 527 \\
\hline 5/1 & 572 \\
\hline 5/2 & 416 \\
\hline 6/1 & 957 \\
\hline 7/1 & 750 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 30 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
537 \text { (In) } \\
507 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 391 \\
\hline 9/1 & 928 \\
\hline 10/1 & 583 \\
\hline 11/1 & 252 \\
\hline 11/2 & 331 \\
\hline 12/1 & 173 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 90 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 112 \text { (In) } \\
& \text { 22(Out) }
\end{aligned}
\] \\
\hline 14/1 & 252 \\
\hline 14/2 & 309 \\
\hline 14/3 & 143 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 20.9 \% & \multirow[b]{2}{*}{1787} & \multirow[b]{2}{*}{1787} \\
\hline & & & & Arm 14 Left & 11.00 & 79.1 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 4: '2029 PM Peak Base' (FG4: '2029 PM Base', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Destination} \\
\hline \multirow{6}{*}{Origin} & & A & B & C & D & Tot. \\
\hline & A & 0 & 393 & 31 & 468 & 892 \\
\hline & B & 339 & 0 & 19 & 227 & 585 \\
\hline & C & 44 & 24 & 0 & 94 & 162 \\
\hline & D & 659 & 549 & 112 & 0 & 1320 \\
\hline & Tot. & 1042 & 966 & 162 & 789 & 2959 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 4: \\
2029 PM Peak Base
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 424 \\
\hline 1/2 & 468 \\
\hline 2/1 & 659 \\
\hline 2/2 & 289 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
372(\text { In }) \\
260(O u t)
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 112 \\
\hline 3/1 & 1042 \\
\hline 4/1 & 321 \\
\hline 4/2 & 468 \\
\hline 5/1 & 321 \\
\hline 5/2 & 383 \\
\hline 6/1 & 892 \\
\hline 7/1 & 1320 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 19 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
246(\text { In }) \\
227 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 339 \\
\hline 9/1 & 585 \\
\hline 10/1 & 966 \\
\hline 11/1 & 448 \\
\hline 11/2 & 518 \\
\hline 12/1 & 162 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 138 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 162(\text { In }) \\
& 24(\text { Out })
\end{aligned}
\] \\
\hline 14/1 & 448 \\
\hline 14/2 & 494 \\
\hline 14/3 & 143 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 0.0 \% & \multirow[b]{2}{*}{1742} & \multirow[b]{2}{*}{1742} \\
\hline & & & & Arm 14 Left & 11.00 & 100.0 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 5: '2026 AM Base + Dev' (FG5: '2026 AM Base + Dev', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{8}{*}{} & \multicolumn{7}{|c|}{ Destination } \\
\hline \multirow{10}{*}{ Origin } & & A & B & C & D & Tot. \\
\cline { 2 - 7 } & A & 0 & 284 & 38 & 676 & 998 \\
\cline { 2 - 8 } & B & 386 & 0 & 28 & 495 & 909 \\
\cline { 2 - 8 } & C & 32 & 16 & 0 & 62 & 110 \\
\cline { 2 - 8 } & D & 617 & 254 & 91 & 0 & 962 \\
\cline { 2 - 7 } & Tot. & 1035 & 554 & 157 & 1233 & 2979 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 5: \\
2026 AM Base + Dev
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 452 \\
\hline 1/2 & 546 \\
\hline 2/1 & 617 \\
\hline 2/2 & 120 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
\text { 225(In) } \\
\text { 134(Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 91 \\
\hline 3/1 & 1035 \\
\hline 4/1 & 687 \\
\hline 4/2 & 546 \\
\hline 5/1 & 557 \\
\hline 5/2 & 418 \\
\hline 6/1 & 998 \\
\hline 7/1 & 962 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 28 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
523 \text { (In) } \\
495 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 386 \\
\hline 9/1 & 909 \\
\hline 10/1 & 554 \\
\hline 11/1 & 243 \\
\hline 11/2 & 311 \\
\hline 12/1 & 157 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 94 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & 110(In)
16(Out) \\
\hline 14/1 & 243 \\
\hline 14/2 & 295 \\
\hline 14/3 & 129 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 28.8 \% & \multirow[b]{2}{*}{1805} & \multirow[b]{2}{*}{1805} \\
\hline & & & & Arm 14 Left & 11.00 & 71.2 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 6: '2026 PM Base + Dev' (FG6: '2026 PM Base + Dev', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired
Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Destination} \\
\hline \multirow{6}{*}{Origin} & & A & B & C & D & Tot. \\
\hline & A & 0 & 365 & 25 & 577 & 967 \\
\hline & B & 308 & 0 & 23 & 261 & 592 \\
\hline & C & 39 & 22 & 0 & 89 & 150 \\
\hline & D & 634 & 564 & 109 & 0 & 1307 \\
\hline & Tot. & 981 & 951 & 157 & 927 & 3016 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 6: \\
2026 PM Base + Dev
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 440 \\
\hline 1/2 & 527 \\
\hline 2/1 & 634 \\
\hline 2/2 & 294 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
379 \text { (In) } \\
270 \text { (Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 109 \\
\hline 3/1 & 981 \\
\hline 4/1 & 400 \\
\hline 4/2 & 527 \\
\hline 5/1 & 350 \\
\hline 5/2 & 347 \\
\hline 6/1 & 967 \\
\hline 7/1 & 1307 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 23 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
284(\text { In }) \\
261 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 308 \\
\hline 9/1 & 592 \\
\hline 10/1 & 951 \\
\hline 11/1 & 435 \\
\hline 11/2 & 516 \\
\hline 12/1 & 157 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 128 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 150 \text { (In) } \\
& 22 \text { (Out) }
\end{aligned}
\] \\
\hline 14/1 & 435 \\
\hline 14/2 & 494 \\
\hline 14/3 & 134 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{1/1
(A4226 (Northbound @ A48))} & \multirow{2}{*}{3.65} & \multirow{2}{*}{0.00} & \multirow{2}{*}{Y} & Arm 4 Right & Inf & 11.4 \% & \multirow{2}{*}{1766} & \multirow{2}{*}{1766} \\
\hline & & & & Arm 14 Left & 11.00 & 88.6 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
2 / 1 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
2 / 2 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 14 Ahead & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline 3/1
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline 6/1
(A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline (A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound
Exit)) & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(8 / 3\)
(A48 (Eastbound
Exit)) Pendoylan & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
10 / 1 \\
\text { (A48 (Westbound Exit) Lane 1) }
\end{gathered}
\] & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 7: '2029 AM Base + Dev' (FG7: '2029 AM Base + Dev', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Destination} \\
\hline \multirow{6}{*}{Origin} & & A & B & C & D & Tot. \\
\hline & A & 0 & 290 & 38 & 672 & 1000 \\
\hline & B & 384 & 0 & 28 & 500 & 912 \\
\hline & C & 43 & 22 & 0 & 63 & 128 \\
\hline & D & 608 & 256 & 94 & 0 & 958 \\
\hline & Tot. & 1035 & 568 & 160 & 1235 & 2998 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 7: \\
2029 AM Base + Dev
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 454 \\
\hline 1/2 & 546 \\
\hline 2/1 & 608 \\
\hline 2/2 & 121 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
229 \text { (In) } \\
135(\text { Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 94 \\
\hline 3/1 & 1035 \\
\hline 4/1 & 689 \\
\hline 4/2 & 546 \\
\hline 5/1 & 563 \\
\hline 5/2 & 427 \\
\hline 6/1 & 1000 \\
\hline 7/1 & 958 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 28 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
528 \text { (In) } \\
500 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 384 \\
\hline 9/1 & 912 \\
\hline 10/1 & 568 \\
\hline 11/1 & 246 \\
\hline 11/2 & 322 \\
\hline 12/1 & 160 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 106 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 128 \text { (In) } \\
& 22 \text { (Out) }
\end{aligned}
\] \\
\hline 14/1 & 246 \\
\hline 14/2 & 300 \\
\hline 14/3 & 132 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 27.8 \% & \multirow[b]{2}{*}{1802} & \multirow[b]{2}{*}{1802} \\
\hline & & & & Arm 14 Left & 11.00 & 72.2 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & & & Infinite S & turation Flow & & & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 8: '2029 PM Base + Dev' (FG8: '2029 PM Base + Dev', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{7}{|c|}{} & \multicolumn{7}{|c|}{ Destination } \\
\hline \multirow{9}{*}{ Origin } & & A & B & C & D & Tot. \\
\cline { 2 - 7 } & A & 0 & 366 & 29 & 584 & 979 \\
\cline { 2 - 8 } & B & 319 & 0 & 24 & 247 & 590 \\
\cline { 2 - 7 } & C & 38 & 26 & 0 & 92 & 156 \\
\cline { 2 - 7 } & D & 634 & 572 & 110 & 0 & 1316 \\
\cline { 2 - 7 } & Tot. & 991 & 964 & 163 & 923 & 3041 \\
\hline
\end{tabular}

Full Input Data And Results
Traffic Lane Flows
\begin{tabular}{|c|c|}
\hline Lane & \begin{tabular}{l}
Scenario 8: \\
2029 PM Base + Dev
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline 1/1 & 447 \\
\hline 1/2 & 532 \\
\hline 2/1 & 634 \\
\hline 2/2 & 299 \\
\hline \[
\begin{gathered}
2 / 3 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
383 \text { (ln) } \\
273 \text { (Out) }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
2 / 4 \\
\text { (short) }
\end{gathered}
\] & 110 \\
\hline 3/1 & 991 \\
\hline 4/1 & 391 \\
\hline 4/2 & 532 \\
\hline 5/1 & 339 \\
\hline 5/2 & 357 \\
\hline 6/1 & 979 \\
\hline 7/1 & 1316 \\
\hline \[
\begin{gathered}
8 / 1 \\
\text { (short) }
\end{gathered}
\] & 24 \\
\hline \[
\begin{gathered}
8 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{gathered}
271 \text { (In) } \\
247 \text { (Out) }
\end{gathered}
\] \\
\hline 8/3 & 319 \\
\hline 9/1 & 590 \\
\hline 10/1 & 964 \\
\hline 11/1 & 443 \\
\hline 11/2 & 521 \\
\hline 12/1 & 163 \\
\hline \[
\begin{gathered}
13 / 1 \\
\text { (short) }
\end{gathered}
\] & 130 \\
\hline \[
\begin{gathered}
13 / 2 \\
\text { (with short) }
\end{gathered}
\] & \[
\begin{aligned}
& 156 \text { (In) } \\
& 26(\text { Out })
\end{aligned}
\] \\
\hline 14/1 & 443 \\
\hline 14/2 & 495 \\
\hline 14/3 & 139 \\
\hline
\end{tabular}

Full Input Data And Results

\section*{Lane Saturation Flows}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Junction: A48 / A4226 Sycamore Cross Junction - Cardiff} \\
\hline Lane & Lane Width (m) & Gradient & Nearside Lane & Allowed Turns & Turning Radius (m) & Turning Prop. & Sat Flow (PCU/Hr) & Flared Sat Flow (PCU/Hr) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 1 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\]} & \multirow[b]{2}{*}{3.65} & \multirow[b]{2}{*}{0.00} & \multirow[b]{2}{*}{Y} & Arm 4 Right & Inf & 11.6 \% & \multirow[b]{2}{*}{1767} & \multirow[b]{2}{*}{1767} \\
\hline & & & & Arm 14 Left & 11.00 & 88.4 \% & & \\
\hline \[
\begin{gathered}
1 / 2 \\
\text { (A4226 (Northbound @ A48)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Right & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
\text { 2/1 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 3 Left & 18.00 & 100.0 \% & 1828 & 1828 \\
\hline \[
\begin{gathered}
\text { 2/2 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/3 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
\text { 2/4 } \\
\text { (A48 (Westbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 14 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \(3 / 1\)
(A4226 (Southbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
4 / 1 \\
(\text { A48 (Eastbound Exit)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline (A48 (Eastbound Exit) Lane 2) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \[
\begin{gathered}
5 / 1 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 4 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
5 / 2 \\
\text { (A48 (Eastbound @ A4226)) }
\end{gathered}
\] & 3.65 & 0.00 & N & Arm 3 Right & 12.00 & 100.0 \% & 1884 & 1884 \\
\hline (A4226 (Northbound Approach)) & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 1 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \[
\begin{gathered}
7 / 1 \\
(\text { A48 (Westbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & \begin{tabular}{l}
Arm 2 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 1980 & 1980 \\
\hline \(8 / 1\)
(A48 (Eastbound
Exit)) & 3.65 & 0.00 & Y & Arm 12 Left & 15.30 & 100.0 \% & 1803 & 1803 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline (A48 (Eastbound \begin{tabular}{c} 
Exit)) \(@\) Pendoylan
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{l}
Arm 5 \\
Ahead
\end{tabular} & Inf & 100.0 \% & 2120 & 2120 \\
\hline \[
\begin{gathered}
9 / 1 \\
\text { (A48 (Eastbound)) }
\end{gathered}
\] & 3.65 & 0.00 & Y & Arm 8 Ahead & Inf & 100.0 \% & 1980 & 1980 \\
\hline 10/1
(A48 (Westbound Exit) Lane 1) & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
11/1 \\
(A48 (Westbound from Pondoylen) Lane 1)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \begin{tabular}{l}
\[
11 / 2
\] \\
(A48 (Westbound from Pondoylen) Lane 2)
\end{tabular} & \multicolumn{6}{|c|}{Infinite Saturation Flow} & Inf & Inf \\
\hline \(12 / 1\)
(Northbound to Pendoylan) & 3.65 & 0.00 & Y & & & & 1980 & 1980 \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & Arm 5 Left & 15.00 & \(100.0 \%\) & 1800 & 1800 \\
\hline \begin{tabular}{c}
\(13 / 2\) \\
(Southbound from Pendoylan)
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Right
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 1\) \\
(A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & Y & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 1980 & 1980 \\
\hline \begin{tabular}{c}
\(14 / 2\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 11 \\
Ahead
\end{tabular} & \(\operatorname{Inf}\) & \(100.0 \%\) & 2120 & 2120 \\
\hline \begin{tabular}{c}
\(14 / 3\) \\
\((\) A48 (Westbound @ Pendoylan \\
Exit))
\end{tabular} & 3.65 & 0.00 & N & \begin{tabular}{c} 
Arm 12 \\
Right
\end{tabular} & 7.00 & \(100.0 \%\) & 1746 & 1746 \\
\hline
\end{tabular}

Scenario 1: '2026 AM Peak Base' (FG1: '2026 AM Base', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 11 & 25 & 11 & 12 \\
\hline Change Point & 0 & 17 & 48 & 65 \\
\hline
\end{tabular}

Signal Timings Diagram



\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & \[
\begin{aligned}
& \text { Lane } \\
& \text { Type }
\end{aligned}
\] & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 73.5\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 73.5\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 29 & - & 426 & 1787 & 646 & 66.0\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 29 & - & 526 & 1980 & 716 & 73.5\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 50 & - & 374 & 1828 & 1123 & 33.3\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 122 & 2120 & 307 & 39.8\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 239 & 2120:2120 & 273+204 & \[
\begin{gathered}
50.1: \\
50.1 \%
\end{gathered}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 781 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 659 & 1980 & 1980 & 33.3\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 526 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 42 & - & 570 & 1980 & 1026 & 55.6\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 25 & - & 407 & 1884 & 590 & 69.0\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 952 & 1980 & 1980 & 48.1\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 735 & 1980 & 1980 & 37.1\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 42 & - & 535 & 2120:1803 & 1039+62 & \[
\begin{aligned}
& 48.6: \\
& 48.6 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 42 & - & 383 & 2120 & 1098 & 34.9\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 918 & 1980 & 1980 & 46.4\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 576 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 251 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 325 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 169 & 1980 & 1980 & 8.5\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 12 & - & 106 & 1980:1800 & \(53+280\) & \[
\begin{gathered}
31.8: \\
31.8 \%
\end{gathered}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 251 & 1980 & 668 & 37.6\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 308 & 2120 & 715 & 43.1\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 11 & - & 139 & 1746 & 252 & 55.1\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 18.7 & 8.9 & 0.0 & 27.6 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 18.7 & 8.9 & 0.0 & 27.6 & - & - & - & - \\
\hline 1/1 & 426 & 426 & - & - & - & 2.6 & 1.0 & - & 3.6 & 30.3 & 8.2 & 1.0 & 9.1 \\
\hline 1/2 & 526 & 526 & - & - & - & 3.4 & 1.4 & - & 4.7 & 32.4 & 10.5 & 1.4 & 11.9 \\
\hline 2/1 & 374 & 374 & - & - & - & 0.8 & 0.2 & - & 1.1 & 10.2 & 4.2 & 0.2 & 4.4 \\
\hline 2/2 & 122 & 122 & - & - & - & 1.1 & 0.3 & - & 1.4 & 42.0 & 2.5 & 0.3 & 2.9 \\
\hline 2/3+2/4 & 239 & 239 & - & - & - & 2.1 & 0.5 & - & 2.6 & 39.8 & 2.9 & 0.5 & 3.4 \\
\hline 3/1 & 781 & 781 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 659 & 659 & - & - & - & 0.0 & 0.2 & - & 0.2 & 1.4 & 0.0 & 0.2 & 0.2 \\
\hline 4/2 & 526 & 526 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 570 & 570 & - & - & - & 0.6 & 0.6 & - & 1.2 & 7.5 & 9.4 & 0.6 & 10.1 \\
\hline 5/2 & 407 & 407 & - & - & - & 1.7 & 1.1 & - & 2.8 & 24.5 & 8.2 & 1.1 & 9.3 \\
\hline 6/1 & 952 & 952 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.7 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 735 & 735 & - & - & - & 0.0 & 0.3 & - & 0.3 & 1.4 & 0.0 & 0.3 & 0.3 \\
\hline 8/2+8/1 & 535 & 535 & - & - & - & 1.9 & 0.5 & - & 2.4 & 15.8 & 7.5 & 0.5 & 7.9 \\
\hline 8/3 & 383 & 383 & - & - & - & 1.3 & 0.3 & - & 1.5 & 14.3 & 5.1 & 0.3 & 5.4 \\
\hline 9/1 & 918 & 918 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.7 & 0.0 & 0.4 & 0.4 \\
\hline 10/1 & 576 & 576 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 251 & 251 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 325 & 325 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 169 & 169 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 106 & 106 & - & - & - & 0.9 & 0.2 & - & 1.1 & 38.8 & 1.8 & 0.2 & 2.0 \\
\hline 14/1 & 251 & 251 & - & - & - & 0.3 & 0.3 & - & 0.6 & 9.1 & 3.3 & 0.3 & 3.6 \\
\hline 14/2 & 308 & 308 & - & - & - & 0.5 & 0.4 & - & 0.8 & 9.7 & 4.3 & 0.4 & 4.7 \\
\hline 14/3 & 139 & 139 & - & - & - & 1.6 & 0.6 & - & 2.2 & 57.7 & 2.9 & 0.6 & 3.6 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 2: '2026 PM Peak Base' (FG2: '2026 PM Base', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 19 & 15 & 12 & 10 \\
\hline Change Point & 0 & 25 & 46 & 64 \\
\hline
\end{tabular}

Signal Timings Diagram


Time in cycle (sec)


\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 99.8\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 99.8\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 28 & - & 418 & 1742 & 631 & 66.2\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 28 & - & 467 & 1980 & 718 & 65.1\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 57 & - & 634 & 1828 & 1325 & 47.8\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 297 & 2120 & 530 & 56.0\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 376 & 2120:2120 & 449+183 & \[
\begin{aligned}
& 59.5: \\
& 59.5 \%
\end{aligned}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 1010 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 313 & 1980 & 1980 & 15.8\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 467 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 40 & - & 313 & 1980 & 1015 & 30.8\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 15 & - & 376 & 1884 & 377 & 99.8\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 885 & 1980 & 1980 & 44.7\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 1307 & 1980 & 1980 & 66.0\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 40 & - & 240 & 2120:1803 & 1009+82 & \[
\begin{aligned}
& 22.0: \\
& 22.0 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 40 & - & 333 & 2120 & 1087 & 30.6\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 573 & 1980 & 1980 & 28.9\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 977 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 453 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 524 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 155 & 1980 & 1980 & 7.8\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 10 & - & 157 & 1980:1800 & \(42+248\) & \[
\begin{aligned}
& 54.1: \\
& 54.1 \%
\end{aligned}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 453 & 1980 & 916 & 49.5\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 501 & 2120 & 980 & 51.1\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 12 & - & 137 & 1746 & 284 & 48.3\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 19.3 & 17.6 & 0.0 & 36.8 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 19.3 & 17.6 & 0.0 & 36.8 & - & - & - & - \\
\hline 1/1 & 418 & 418 & - & - & - & 2.5 & 1.0 & - & 3.5 & 29.7 & 7.8 & 1.0 & 8.7 \\
\hline 1/2 & 467 & 467 & - & - & - & 2.8 & 0.9 & - & 3.7 & 28.4 & 8.6 & 0.9 & 9.5 \\
\hline 2/1 & 634 & 634 & - & - & - & 0.8 & 0.5 & - & 1.3 & 7.2 & 5.8 & 0.5 & 6.3 \\
\hline 2/2 & 297 & 297 & - & - & - & 2.2 & 0.6 & - & 2.8 & 33.9 & 5.7 & 0.6 & 6.3 \\
\hline 2/3+2/4 & 376 & 376 & - & - & - & 2.6 & 0.7 & - & 3.4 & 32.2 & 5.1 & 0.7 & 5.8 \\
\hline 3/1 & 1010 & 1010 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 313 & 313 & - & - & - & 0.0 & 0.1 & - & 0.1 & 1.1 & 0.0 & 0.1 & 0.1 \\
\hline 4/2 & 467 & 467 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 313 & 313 & - & - & - & 0.5 & 0.2 & - & 0.7 & 8.0 & 4.8 & 0.2 & 5.0 \\
\hline 5/2 & 376 & 376 & - & - & - & 2.4 & 9.5 & - & 11.9 & 114.4 & 8.3 & 9.5 & 17.8 \\
\hline 6/1 & 885 & 885 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.6 & 0.0 & 0.4 & 0.4 \\
\hline 7/1 & 1307 & 1307 & - & - & - & 0.0 & 1.0 & - & 1.0 & 2.7 & 0.0 & 1.0 & 1.0 \\
\hline 8/2+8/1 & 240 & 240 & - & - & - & 0.7 & 0.1 & - & 0.8 & 12.7 & 2.7 & 0.1 & 2.8 \\
\hline 8/3 & 333 & 333 & - & - & - & 1.0 & 0.2 & - & 1.3 & 13.7 & 4.3 & 0.2 & 4.5 \\
\hline 9/1 & 573 & 573 & - & - & - & 0.0 & 0.2 & - & 0.2 & 1.3 & 0.0 & 0.2 & 0.2 \\
\hline 10/1 & 977 & 977 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 453 & 453 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 524 & 524 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 155 & 155 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 157 & 157 & - & - & - & 1.4 & 0.6 & - & 2.0 & 45.3 & 2.8 & 0.6 & 3.3 \\
\hline 14/1 & 453 & 453 & - & - & - & 0.4 & 0.5 & - & 0.8 & 6.7 & 4.0 & 0.5 & 4.5 \\
\hline 14/2 & 501 & 501 & - & - & - & 0.5 & 0.5 & - & 1.1 & 7.6 & 6.8 & 0.5 & 7.3 \\
\hline 14/3 & 137 & 137 & - & - & - & 1.5 & 0.5 & - & 1.9 & 51.1 & 2.8 & 0.5 & 3.2 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 3: '2029 AM Peak Base' (FG3: '2029 AM Base', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 11 & 25 & 11 & 12 \\
\hline Change Point & 0 & 17 & 48 & 65 \\
\hline
\end{tabular}

Signal Timings Diagram



\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 73.6\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 73.6\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 29 & - & 430 & 1787 & 646 & 66.6\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 29 & - & 527 & 1980 & 716 & 73.6\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 50 & - & 386 & 1828 & 1123 & 34.4\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 122 & 2120 & 307 & 39.8\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 242 & 2120:2120 & 273+209 & \[
\begin{aligned}
& 50.2: \\
& 50.2 \%
\end{aligned}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 802 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 662 & 1980 & 1980 & 33.4\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 527 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 42 & - & 572 & 1980 & 1026 & 55.8\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 25 & - & 416 & 1884 & 590 & 70.5\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 957 & 1980 & 1980 & 48.3\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 750 & 1980 & 1980 & 37.9\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 42 & - & 537 & 2120:1803 & 1039+62 & \[
\begin{aligned}
& 48.8: \\
& 48.8 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 42 & - & 391 & 2120 & 1098 & 35.6\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 928 & 1980 & 1980 & 46.9\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 583 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 252 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 331 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 173 & 1980 & 1980 & 8.7\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 12 & - & 112 & 1980:1800 & \(67+275\) & \[
\begin{gathered}
32.7: \\
32.7 \%
\end{gathered}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 252 & 1980 & 668 & 37.7\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 309 & 2120 & 715 & 43.2\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 11 & - & 143 & 1746 & 252 & 56.6\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 19.0 & 9.1 & 0.0 & 28.1 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 19.0 & 9.1 & 0.0 & 28.1 & - & - & - & - \\
\hline 1/1 & 430 & 430 & - & - & - & 2.7 & 1.0 & - & 3.6 & 30.5 & 8.2 & 1.0 & 9.2 \\
\hline 1/2 & 527 & 527 & - & - & - & 3.4 & 1.4 & - & 4.8 & 32.5 & 10.5 & 1.4 & 11.9 \\
\hline 2/1 & 386 & 386 & - & - & - & 0.8 & 0.3 & - & 1.1 & 10.3 & 4.3 & 0.3 & 4.6 \\
\hline 2/2 & 122 & 122 & - & - & - & 1.1 & 0.3 & - & 1.4 & 42.0 & 2.5 & 0.3 & 2.9 \\
\hline 2/3+2/4 & 242 & 242 & - & - & - & 2.2 & 0.5 & - & 2.7 & 39.7 & 2.9 & 0.5 & 3.4 \\
\hline 3/1 & 802 & 802 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 662 & 662 & - & - & - & 0.0 & 0.3 & - & 0.3 & 1.4 & 0.0 & 0.3 & 0.3 \\
\hline 4/2 & 527 & 527 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 572 & 572 & - & - & - & 0.6 & 0.6 & - & 1.2 & 7.5 & 9.5 & 0.6 & 10.1 \\
\hline 5/2 & 416 & 416 & - & - & - & 1.7 & 1.2 & - & 2.9 & 25.1 & 8.5 & 1.2 & 9.7 \\
\hline 6/1 & 957 & 957 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 750 & 750 & - & - & - & 0.0 & 0.3 & - & 0.3 & 1.5 & 0.0 & 0.3 & 0.3 \\
\hline 8/2+8/1 & 537 & 537 & - & - & - & 1.9 & 0.5 & - & 2.4 & 15.8 & 7.7 & 0.5 & 8.1 \\
\hline 8/3 & 391 & 391 & - & - & - & 1.3 & 0.3 & - & 1.6 & 14.4 & 5.3 & 0.3 & 5.6 \\
\hline 9/1 & 928 & 928 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.7 & 0.0 & 0.4 & 0.4 \\
\hline 10/1 & 583 & 583 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 252 & 252 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 331 & 331 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 173 & 173 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 112 & 112 & - & - & - & 1.0 & 0.2 & - & 1.2 & 38.7 & 1.8 & 0.2 & 2.1 \\
\hline 14/1 & 252 & 252 & - & - & - & 0.3 & 0.3 & - & 0.6 & 9.2 & 3.4 & 0.3 & 3.7 \\
\hline 14/2 & 309 & 309 & - & - & - & 0.5 & 0.4 & - & 0.8 & 9.8 & 4.4 & 0.4 & 4.7 \\
\hline 14/3 & 143 & 143 & - & - & - & 1.7 & 0.6 & - & 2.3 & 58.4 & 3.0 & 0.6 & 3.7 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 4: '2029 PM Peak Base' (FG4: '2029 PM Base', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 19 & 15 & 12 & 10 \\
\hline Change Point & 0 & 25 & 46 & 64 \\
\hline
\end{tabular}

Signal Timings Diagram


Time in cycle (sec)


\section*{Full Input Data And Results}

\section*{Network Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & \begin{tabular}{l}
Lane \\
Type
\end{tabular} & Controller Stream & Position In Filtered Route & Full Phase & \begin{tabular}{l}
Arrow \\
Phase
\end{tabular} & Num Greens & Total Green (s) & Arrow Green (s) & \begin{tabular}{l}
Demand \\
Flow (pcu)
\end{tabular} & Sat Flow (pcu/Hr) & Capacity (pcu) & \begin{tabular}{l}
Deg Sat \\
(\%)
\end{tabular} \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 101.6\% \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction - Cardiff
\end{tabular} & - & - & N/A & - & - & & - & - & - & - & - & - & 101.6\% \\
\hline 1/1 & \begin{tabular}{l}
A4226 \\
(Northbound @ A48) Right Left
\end{tabular} & U & N/A & N/A & H & & 1 & 28 & - & 424 & 1742 & 631 & 67.1\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 28 & - & 468 & 1980 & 718 & 65.2\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 57 & - & 659 & 1828 & 1325 & 49.7\% \\
\hline 2/2 & A48 (Westbound @ A4226) Ahead & U & N/A & N/A & B & & 1 & 19 & - & 289 & 2120 & 530 & 54.5\% \\
\hline 2/3+2/4 & A48 (Westbound @ A4226) Ahead & U & N/A & N/A & B & & 1 & 19 & - & 372 & 2120:2120 & 445+192 & \[
\begin{gathered}
58.4: \\
58.4 \%
\end{gathered}
\] \\
\hline 3/1 & \begin{tabular}{l}
A4226 \\
(Southbound Exit)
\end{tabular} & U & N/A & N/A & - & & - & - & - & 1042 & Inf & Inf & 0.0\% \\
\hline 4/1 & A48 (Eastbound Exit) & U & N/A & N/A & - & & - & - & - & 321 & 1980 & 1980 & 16.2\% \\
\hline 4/2 & A48 (Eastbound Exit) & U & N/A & N/A & - & & - & - & - & 468 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 40 & - & 321 & 1980 & 1015 & 31.6\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 15 & - & 383 & 1884 & 377 & 101.6\% \\
\hline 6/1 & \begin{tabular}{l}
A4226 \\
(Northbound \\
Approach) Ahead
\end{tabular} & U & N/A & N/A & - & & - & - & - & 892 & 1980 & 1980 & 45.1\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 1320 & 1980 & 1980 & 66.7\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 40 & - & 246 & 2120:1803 & 1007+84 & \[
\begin{gathered}
22.5: \\
22.5 \%
\end{gathered}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 40 & - & 339 & 2120 & 1087 & 31.2\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 585 & 1980 & 1980 & 29.5\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 966 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 448 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 518 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 162 & 1980 & 1980 & 8.2\% \\
\hline \(13 / 2+13 / 1\) & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 10 & - & 162 & 1980:1800 & \(43+248\) & \[
\begin{aligned}
& 55.8: \\
& 55.8 \%
\end{aligned}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 448 & 1980 & 916 & 48.9\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 494 & 2120 & 980 & 50.4\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 12 & - & 143 & 1746 & 284 & 50.4\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & \begin{tabular}{l}
Storage \\
Area \\
Uniform \\
Delay \\
(pcuHr)
\end{tabular} & Total Delay (pcuHr) & \begin{tabular}{l}
Av. Delay \\
Per PCU \\
(s/pcu)
\end{tabular} & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 19.7 & 19.7 & 0.0 & 39.4 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 19.7 & 19.7 & 0.0 & 39.4 & - & - & - & - \\
\hline 1/1 & 424 & 424 & - & - & - & 2.5 & 1.0 & - & 3.5 & 30.1 & 7.9 & 1.0 & 8.9 \\
\hline 1/2 & 468 & 468 & - & - & - & 2.8 & 0.9 & - & 3.7 & 28.4 & 8.6 & 0.9 & 9.5 \\
\hline 2/1 & 659 & 659 & - & - & - & 0.9 & 0.5 & - & 1.4 & 7.4 & 6.2 & 0.5 & 6.7 \\
\hline 2/2 & 289 & 289 & - & - & - & 2.1 & 0.6 & - & 2.7 & 33.5 & 5.5 & 0.6 & 6.1 \\
\hline 2/3+2/4 & 372 & 372 & - & - & - & 2.6 & 0.7 & - & 3.3 & 31.8 & 4.9 & 0.7 & 5.6 \\
\hline 3/1 & 1036 & 1036 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 321 & 321 & - & - & - & 0.0 & 0.1 & - & 0.1 & 1.1 & 0.0 & 0.1 & 0.1 \\
\hline 4/2 & 468 & 468 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 321 & 321 & - & - & - & 0.5 & 0.2 & - & 0.7 & 8.1 & 5.1 & 0.2 & 5.3 \\
\hline 5/2 & 383 & 377 & - & - & - & 2.7 & 11.5 & - & 14.2 & 133.0 & 8.6 & 11.5 & 20.1 \\
\hline 6/1 & 892 & 892 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.7 & 0.0 & 0.4 & 0.4 \\
\hline 7/1 & 1320 & 1320 & - & - & - & 0.0 & 1.0 & - & 1.0 & 2.7 & 0.0 & 1.0 & 1.0 \\
\hline 8/2+8/1 & 246 & 246 & - & - & - & 0.7 & 0.1 & - & 0.9 & 12.7 & 2.7 & 0.1 & 2.9 \\
\hline 8/3 & 339 & 339 & - & - & - & 1.1 & 0.2 & - & 1.3 & 13.7 & 4.3 & 0.2 & 4.6 \\
\hline 9/1 & 585 & 585 & - & - & - & 0.0 & 0.2 & - & 0.2 & 1.3 & 0.0 & 0.2 & 0.2 \\
\hline 10/1 & 966 & 966 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 448 & 448 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 518 & 518 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 162 & 162 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline \(13 / 2+13 / 1\) & 162 & 162 & - & - & - & 1.4 & 0.6 & - & 2.1 & 45.8 & 2.8 & 0.6 & 3.5 \\
\hline 14/1 & 448 & 448 & - & - & - & 0.4 & 0.5 & - & 0.8 & 6.8 & 6.7 & 0.5 & 7.2 \\
\hline 14/2 & 494 & 494 & - & - & - & 0.5 & 0.5 & - & 1.1 & 7.7 & 6.8 & 0.5 & 7.3 \\
\hline 14/3 & 143 & 143 & - & - & - & 1.5 & 0.5 & - & 2.0 & 51.6 & 2.9 & 0.5 & 3.4 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 5: '2026 AM Base + Dev' (FG5: '2026 AM Base + Dev', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 11 & 25 & 11 & 12 \\
\hline Change Point & 0 & 17 & 48 & 65 \\
\hline
\end{tabular}

Signal Timings Diagram



\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 76.3\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 76.3\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 29 & - & 452 & 1805 & 652 & 69.3\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 29 & - & 546 & 1980 & 716 & 76.3\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 50 & - & 617 & 1828 & 1123 & 54.9\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 120 & 2120 & 307 & 39.2\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 225 & 2120:2120 & 276+187 & \[
\begin{aligned}
& 48.6: \\
& 48.6 \%
\end{aligned}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 1035 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 687 & 1980 & 1980 & 34.7\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 546 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 42 & - & 557 & 1980 & 1026 & 54.3\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 25 & - & 418 & 1884 & 590 & 70.8\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 998 & 1980 & 1980 & 50.4\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 962 & 1980 & 1980 & 48.6\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 42 & - & 523 & 2120:1803 & 1042+59 & \[
\begin{aligned}
& 47.5: \\
& 47.5 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 42 & - & 386 & 2120 & 1098 & 35.1\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 909 & 1980 & 1980 & 45.9\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 554 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 243 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 311 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 157 & 1980 & 1980 & 7.9\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 12 & - & 110 & 1980:1800 & \(48+282\) & \[
\begin{gathered}
33.4: \\
33.4 \%
\end{gathered}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 243 & 1980 & 668 & 36.4\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 295 & 2120 & 715 & 41.2\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 11 & - & 129 & 1746 & 252 & 51.1\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 19.7 & 9.7 & 0.0 & 29.4 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 19.7 & 9.7 & 0.0 & 29.4 & - & - & - & - \\
\hline 1/1 & 452 & 452 & - & - & - & 2.8 & 1.1 & - & 4.0 & 31.5 & 8.8 & 1.1 & 9.9 \\
\hline 1/2 & 546 & 546 & - & - & - & 3.5 & 1.6 & - & 5.1 & 33.8 & 11.1 & 1.6 & 12.7 \\
\hline 2/1 & 617 & 617 & - & - & - & 1.6 & 0.6 & - & 2.2 & 12.9 & 8.2 & 0.6 & 8.8 \\
\hline 2/2 & 120 & 120 & - & - & - & 1.1 & 0.3 & - & 1.4 & 41.8 & 2.5 & 0.3 & 2.8 \\
\hline 2/3+2/4 & 225 & 225 & - & - & - & 2.0 & 0.5 & - & 2.5 & 39.7 & 2.8 & 0.5 & 3.3 \\
\hline 3/1 & 1035 & 1035 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 687 & 687 & - & - & - & 0.0 & 0.3 & - & 0.3 & 1.4 & 0.0 & 0.3 & 0.3 \\
\hline 4/2 & 546 & 546 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 557 & 557 & - & - & - & 0.5 & 0.6 & - & 1.1 & 7.3 & 9.0 & 0.6 & 9.6 \\
\hline 5/2 & 418 & 418 & - & - & - & 1.8 & 1.2 & - & 3.0 & 25.7 & 8.6 & 1.2 & 9.8 \\
\hline 6/1 & 998 & 998 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 962 & 962 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 8/2+8/1 & 523 & 523 & - & - & - & 1.8 & 0.5 & - & 2.3 & 15.7 & 7.3 & 0.5 & 7.8 \\
\hline 8/3 & 386 & 386 & - & - & - & 1.3 & 0.3 & - & 1.5 & 14.3 & 5.1 & 0.3 & 5.4 \\
\hline 9/1 & 909 & 909 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.7 & 0.0 & 0.4 & 0.4 \\
\hline 10/1 & 554 & 554 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 243 & 243 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 311 & 311 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 157 & 157 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 110 & 110 & - & - & - & 0.9 & 0.2 & - & 1.2 & 39.2 & 1.9 & 0.2 & 2.2 \\
\hline 14/1 & 243 & 243 & - & - & - & 0.3 & 0.3 & - & 0.6 & 9.2 & 3.3 & 0.3 & 3.6 \\
\hline 14/2 & 295 & 295 & - & - & - & 0.4 & 0.4 & - & 0.8 & 9.7 & 4.3 & 0.4 & 4.6 \\
\hline 14/3 & 129 & 129 & - & - & - & 1.5 & 0.5 & - & 2.0 & 56.4 & 2.7 & 0.5 & 3.2 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 6: '2026 PM Base + Dev' (FG6: '2026 PM Base + Dev', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 19 & 15 & 12 & 10 \\
\hline Change Point & 0 & 25 & 46 & 64 \\
\hline
\end{tabular}

Signal Timings Diagram


Time in cycle (sec)


\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 92.1\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 92.1\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 28 & - & 440 & 1766 & 640 & 68.7\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 28 & - & 527 & 1980 & 718 & 73.4\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 57 & - & 634 & 1828 & 1325 & 47.8\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 294 & 2120 & 530 & 55.5\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 379 & 2120:2120 & 450+182 & \[
\begin{gathered}
60.1: \\
60.1 \%
\end{gathered}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 981 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 400 & 1980 & 1980 & 20.2\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 527 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 40 & - & 350 & 1980 & 1015 & 34.5\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 15 & - & 347 & 1884 & 377 & 92.1\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 967 & 1980 & 1980 & 48.8\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 1307 & 1980 & 1980 & 66.0\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 40 & - & 284 & 2120:1803 & 1003+88 & \[
\begin{aligned}
& 26.0: \\
& 26.0 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 40 & - & 308 & 2120 & 1087 & 28.3\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 592 & 1980 & 1980 & 29.9\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 951 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 435 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 516 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 157 & 1980 & 1980 & 7.9\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 10 & - & 150 & 1980:1800 & \(43+248\) & \[
\begin{aligned}
& 51.7: \\
& 51.7 \%
\end{aligned}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 435 & 1980 & 916 & 47.5\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 494 & 2120 & 980 & 50.4\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 12 & - & 134 & 1746 & 284 & 47.2\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 19.7 & 13.2 & 0.0 & 32.8 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 19.7 & 13.2 & 0.0 & 32.8 & - & - & - & - \\
\hline 1/1 & 440 & 440 & - & - & - & 2.6 & 1.1 & - & 3.7 & 30.5 & 8.2 & 1.1 & 9.3 \\
\hline 1/2 & 527 & 527 & - & - & - & 3.2 & 1.4 & - & 4.6 & 31.5 & 10.1 & 1.4 & 11.5 \\
\hline 2/1 & 634 & 634 & - & - & - & 0.8 & 0.5 & - & 1.3 & 7.2 & 5.8 & 0.5 & 6.3 \\
\hline 2/2 & 294 & 294 & - & - & - & 2.1 & 0.6 & - & 2.8 & 33.7 & 5.6 & 0.6 & 6.3 \\
\hline 2/3+2/4 & 379 & 379 & - & - & - & 2.7 & 0.7 & - & 3.4 & 32.3 & 5.2 & 0.7 & 6.0 \\
\hline 3/1 & 981 & 981 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 400 & 400 & - & - & - & 0.0 & 0.1 & - & 0.1 & 1.1 & 0.0 & 0.1 & 0.1 \\
\hline 4/2 & 527 & 527 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 350 & 350 & - & - & - & 0.5 & 0.3 & - & 0.8 & 7.8 & 5.4 & 0.3 & 5.6 \\
\hline 5/2 & 347 & 347 & - & - & - & 2.2 & 4.5 & - & 6.7 & 69.4 & 7.5 & 4.5 & 12.0 \\
\hline 6/1 & 967 & 967 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 1307 & 1307 & - & - & - & 0.0 & 1.0 & - & 1.0 & 2.7 & 0.0 & 1.0 & 1.0 \\
\hline 8/2+8/1 & 284 & 284 & - & - & - & 0.8 & 0.2 & - & 1.0 & 13.0 & 3.2 & 0.2 & 3.4 \\
\hline 8/3 & 308 & 308 & - & - & - & 1.0 & 0.2 & - & 1.2 & 13.4 & 3.8 & 0.2 & 4.0 \\
\hline 9/1 & 592 & 592 & - & - & - & 0.0 & 0.2 & - & 0.2 & 1.3 & 0.0 & 0.2 & 0.2 \\
\hline 10/1 & 951 & 951 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 435 & 435 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 516 & 516 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 157 & 157 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 150 & 150 & - & - & - & 1.3 & 0.5 & - & 1.9 & 44.5 & 2.6 & 0.5 & 3.2 \\
\hline 14/1 & 435 & 435 & - & - & - & 0.3 & 0.5 & - & 0.8 & 6.5 & 4.0 & 0.5 & 4.4 \\
\hline 14/2 & 494 & 494 & - & - & - & 0.5 & 0.5 & - & 1.1 & 7.7 & 7.1 & 0.5 & 7.6 \\
\hline 14/3 & 134 & 134 & - & - & - & 1.5 & 0.4 & - & 1.9 & 51.4 & 2.8 & 0.4 & 3.2 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 7: '2029 AM Base + Dev' (FG7: '2029 AM Base + Dev', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 11 & 25 & 11 & 12 \\
\hline Change Point & 0 & 17 & 48 & 65 \\
\hline
\end{tabular}

Signal Timings Diagram



\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 76.3\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 76.3\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 29 & - & 454 & 1802 & 651 & 69.7\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 29 & - & 546 & 1980 & 716 & 76.3\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 50 & - & 608 & 1828 & 1123 & 54.1\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 121 & 2120 & 307 & 39.5\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 11 & - & 229 & 2120:2120 & 275+192 & \[
\begin{aligned}
& 49.1: \\
& 49.1 \%
\end{aligned}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 1035 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 689 & 1980 & 1980 & 34.8\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 546 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 42 & - & 563 & 1980 & 1026 & 54.9\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 25 & - & 427 & 1884 & 590 & 72.4\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 1000 & 1980 & 1980 & 50.5\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 958 & 1980 & 1980 & 48.4\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 42 & - & 528 & 2120:1803 & 1042+58 & \[
\begin{aligned}
& 48.0: \\
& 48.0 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 42 & - & 384 & 2120 & 1098 & 35.0\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 912 & 1980 & 1980 & 46.1\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 568 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 246 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 322 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 160 & 1980 & 1980 & 8.1\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 12 & - & 128 & 1980:1800 & 58+278 & \[
\begin{aligned}
& 38.1: \\
& 38.1 \%
\end{aligned}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 246 & 1980 & 668 & 36.8\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 26 & - & 300 & 2120 & 715 & 41.9\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 11 & - & 132 & 1746 & 252 & 52.3\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & Mean Max Queue (pcu) \\
\hline Network & - & - & 0 & 0 & 0 & 20.1 & 10.0 & 0.0 & 30.1 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 20.1 & 10.0 & 0.0 & 30.1 & - & - & - & - \\
\hline 1/1 & 454 & 454 & - & - & - & 2.9 & 1.1 & - & 4.0 & 31.6 & 8.8 & 1.1 & 10.0 \\
\hline 1/2 & 546 & 546 & - & - & - & 3.5 & 1.6 & - & 5.1 & 33.8 & 11.1 & 1.6 & 12.7 \\
\hline 2/1 & 608 & 608 & - & - & - & 1.6 & 0.6 & - & 2.1 & 12.7 & 7.9 & 0.6 & 8.5 \\
\hline 2/2 & 121 & 121 & - & - & - & 1.1 & 0.3 & - & 1.4 & 41.9 & 2.5 & 0.3 & 2.8 \\
\hline 2/3+2/4 & 229 & 229 & - & - & - & 2.0 & 0.5 & - & 2.5 & 39.7 & 2.8 & 0.5 & 3.3 \\
\hline 3/1 & 1035 & 1035 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 689 & 689 & - & - & - & 0.0 & 0.3 & - & 0.3 & 1.4 & 0.0 & 0.3 & 0.3 \\
\hline 4/2 & 546 & 546 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 563 & 563 & - & - & - & 0.5 & 0.6 & - & 1.1 & 7.3 & 9.1 & 0.6 & 9.7 \\
\hline 5/2 & 427 & 427 & - & - & - & 1.9 & 1.3 & - & 3.2 & 27.1 & 8.8 & 1.3 & 10.1 \\
\hline 6/1 & 1000 & 1000 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 958 & 958 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 8/2+8/1 & 528 & 528 & - & - & - & 1.8 & 0.5 & - & 2.3 & 15.7 & 7.4 & 0.5 & 7.8 \\
\hline 8/3 & 384 & 384 & - & - & - & 1.3 & 0.3 & - & 1.5 & 14.3 & 5.1 & 0.3 & 5.4 \\
\hline 9/1 & 912 & 912 & - & - & - & 0.0 & 0.4 & - & 0.4 & 1.7 & 0.0 & 0.4 & 0.4 \\
\hline 10/1 & 568 & 568 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 246 & 246 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 322 & 322 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 160 & 160 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 128 & 128 & - & - & - & 1.1 & 0.3 & - & 1.4 & 39.8 & 2.2 & 0.3 & 2.5 \\
\hline 14/1 & 246 & 246 & - & - & - & 0.3 & 0.3 & - & 0.6 & 9.3 & 3.4 & 0.3 & 3.7 \\
\hline 14/2 & 300 & 300 & - & - & - & 0.5 & 0.4 & - & 0.8 & 9.9 & 4.3 & 0.4 & 4.7 \\
\hline 14/3 & 132 & 132 & - & - & - & 1.5 & 0.5 & - & 2.1 & 57.0 & 2.8 & 0.5 & 3.3 \\
\hline
\end{tabular}

Full Input Data And Results


Full Input Data And Results
Scenario 8: '2029 PM Base + Dev' (FG8: '2029 PM Base + Dev', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


\section*{Stage Timings}
\begin{tabular}{|c|c|c|c|c|}
\hline Stage & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline Duration & 19 & 15 & 12 & 10 \\
\hline Change Point & 0 & 25 & 46 & 64 \\
\hline
\end{tabular}

Signal Timings Diagram


Time in cycle (sec)


\section*{Full Input Data And Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Lane Description & Lane Type & Controller Stream & Position In Filtered Route & Full Phase & Arrow Phase & Num Greens & Total Green (s) & Arrow Green (s) & Demand Flow (pcu) & Sat Flow (pcu/Hr) & Capacity (pcu) & \[
\begin{aligned}
& \text { Deg Sat } \\
& \text { (\%) }
\end{aligned}
\] \\
\hline Network & - & - & N/A & - & - & & - & - & - & - & - & - & 94.7\% \\
\hline A48 / A4226 Sycamore Cross Junction - Cardiff & - & - & N/A & - & - & & - & - & - & - & - & - & 94.7\% \\
\hline 1/1 & A4226 (Northbound @ A48) Right Left & U & N/A & N/A & H & & 1 & 28 & - & 447 & 1767 & 641 & 69.8\% \\
\hline 1/2 & A4226 (Northbound @ A48) Right & U & N/A & N/A & H & & 1 & 28 & - & 532 & 1980 & 718 & 74.1\% \\
\hline 2/1 & A48 (Westbound @ A4226) Left & U & N/A & N/A & 1 & & 1 & 57 & - & 634 & 1828 & 1325 & 47.8\% \\
\hline 2/2 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 299 & 2120 & 530 & 56.4\% \\
\hline 2/3+2/4 & \begin{tabular}{l}
A48 (Westbound \\
@ A4226) Ahead
\end{tabular} & U & N/A & N/A & B & & 1 & 19 & - & 383 & 2120:2120 & 450+181 & \[
\begin{aligned}
& 60.7: \\
& 60.7 \%
\end{aligned}
\] \\
\hline 3/1 & A4226 (Southbound Exit) & U & N/A & N/A & - & & - & - & - & 991 & Inf & Inf & 0.0\% \\
\hline 4/1 & \[
\begin{aligned}
& \text { A48 (Eastbound } \\
& \text { Exit) }
\end{aligned}
\] & U & N/A & N/A & - & & - & - & - & 391 & 1980 & 1980 & 19.7\% \\
\hline 4/2 & \[
\begin{gathered}
\text { A48 (Eastbound } \\
\text { Exit) }
\end{gathered}
\] & U & N/A & N/A & - & & - & - & - & 532 & Inf & Inf & 0.0\% \\
\hline 5/1 & A48 (Eastbound @ A4226) Ahead & U & N/A & N/A & C & & 1 & 40 & - & 339 & 1980 & 1015 & 33.4\% \\
\hline 5/2 & A48 (Eastbound @ A4226) Right & U & N/A & N/A & E & & 1 & 15 & - & 357 & 1884 & 377 & 94.7\% \\
\hline 6/1 & A4226 (Northbound Approach) Ahead & U & N/A & N/A & - & & - & - & - & 979 & 1980 & 1980 & 49.4\% \\
\hline 7/1 & A48 (Westbound) Ahead & U & N/A & N/A & - & & - & - & - & 1316 & 1980 & 1980 & 66.5\% \\
\hline 8/2+8/1 & A48 (Eastbound @ Pendoylan Exit) Ahead Left & U & N/A & N/A & A & & 1 & 40 & - & 271 & 2120:1803 & 996+97 & \[
\begin{aligned}
& 24.8: \\
& 24.8 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8/3 & A48 (Eastbound @ Pendoylan Exit) Ahead & U & N/A & N/A & A & 1 & 40 & - & 319 & 2120 & 1087 & 29.4\% \\
\hline 9/1 & A48 (Eastbound) Ahead & U & N/A & N/A & - & - & - & - & 590 & 1980 & 1980 & 29.8\% \\
\hline 10/1 & A48 (Westbound Exit) & U & N/A & N/A & - & - & - & - & 964 & Inf & Inf & 0.0\% \\
\hline 11/1 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 443 & Inf & Inf & 0.0\% \\
\hline 11/2 & A48 (Westbound from Pondoylen) Ahead & U & N/A & N/A & - & - & - & - & 521 & Inf & Inf & 0.0\% \\
\hline 12/1 & Northbound to Pendoylan & U & N/A & N/A & - & - & - & - & 163 & 1980 & 1980 & 8.2\% \\
\hline 13/2+13/1 & Southbound from Pendoylan Left Right & U & N/A & N/A & G & 1 & 10 & - & 156 & 1980:1800 & 50+248 & \[
\begin{aligned}
& 52.5: \\
& 52.5 \%
\end{aligned}
\] \\
\hline 14/1 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 443 & 1980 & 916 & 48.4\% \\
\hline 14/2 & A48 (Westbound @ Pendoylan Exit) Ahead & U & N/A & N/A & D & 2 & 35 & - & 495 & 2120 & 980 & 50.5\% \\
\hline 14/3 & A48 (Westbound @ Pendoylan Exit) Right & U & N/A & N/A & F & 1 & 12 & - & 139 & 1746 & 284 & 49.0\% \\
\hline Ped Link: P1 & Unnamed Ped Link & - & N/A & - & J & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P2 & Unnamed Ped Link & - & N/A & - & K & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P3 & Unnamed Ped Link & - & N/A & - & L & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline Ped Link: P4 & Unnamed Ped Link & - & N/A & - & M & 0 & 0 & - & 0 & - & 0 & 0.0\% \\
\hline
\end{tabular}

Full Input Data And Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Item & Arriving (pcu) & Leaving (pcu) & Turners In Gaps (pcu) & Turners When Unopposed (pcu) & Turners In Intergreen (pcu) & Uniform Delay (pcuHr) & Rand + Oversat Delay (pcuHr) & Storage Area Uniform Delay (pcuHr) & Total Delay (pcuHr) & Av. Delay Per PCU (s/pcu) & Max. Back of Uniform Queue (pcu) & Rand + Oversat Queue (pcu) & \begin{tabular}{l}
Mean \\
Max \\
Queue \\
(pcu)
\end{tabular} \\
\hline Network & - & - & 0 & 0 & 0 & 20.0 & 14.6 & 0.0 & 34.6 & - & - & - & - \\
\hline \begin{tabular}{l}
A48 / A4226 \\
Sycamore Cross Junction \\
- Cardiff
\end{tabular} & - & - & 0 & 0 & 0 & 20.0 & 14.6 & 0.0 & 34.6 & - & - & - & - \\
\hline 1/1 & 447 & 447 & - & - & - & 2.7 & 1.1 & - & 3.8 & 31.0 & 8.4 & 1.1 & 9.6 \\
\hline 1/2 & 532 & 532 & - & - & - & 3.3 & 1.4 & - & 4.7 & 31.8 & 10.2 & 1.4 & 11.6 \\
\hline 2/1 & 634 & 634 & - & - & - & 0.8 & 0.5 & - & 1.3 & 7.2 & 5.8 & 0.5 & 6.3 \\
\hline 2/2 & 299 & 299 & - & - & - & 2.2 & 0.6 & - & 2.8 & 33.9 & 5.7 & 0.6 & 6.4 \\
\hline 2/3+2/4 & 383 & 383 & - & - & - & 2.7 & 0.8 & - & 3.5 & 32.5 & 5.3 & 0.8 & 6.1 \\
\hline 3/1 & 991 & 991 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4/1 & 391 & 391 & - & - & - & 0.0 & 0.1 & - & 0.1 & 1.1 & 0.0 & 0.1 & 0.1 \\
\hline 4/2 & 532 & 532 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5/1 & 339 & 339 & - & - & - & 0.5 & 0.3 & - & 0.8 & 8.0 & 5.3 & 0.3 & 5.5 \\
\hline 5/2 & 357 & 357 & - & - & - & 2.3 & 5.7 & - & 8.0 & 80.6 & 7.8 & 5.7 & 13.5 \\
\hline 6/1 & 979 & 979 & - & - & - & 0.0 & 0.5 & - & 0.5 & 1.8 & 0.0 & 0.5 & 0.5 \\
\hline 7/1 & 1316 & 1316 & - & - & - & 0.0 & 1.0 & - & 1.0 & 2.7 & 0.0 & 1.0 & 1.0 \\
\hline 8/2+8/1 & 271 & 271 & - & - & - & 0.8 & 0.2 & - & 1.0 & 12.9 & 3.0 & 0.2 & 3.2 \\
\hline 8/3 & 319 & 319 & - & - & - & 1.0 & 0.2 & - & 1.2 & 13.5 & 4.0 & 0.2 & 4.2 \\
\hline 9/1 & 590 & 590 & - & - & - & 0.0 & 0.2 & - & 0.2 & 1.3 & 0.0 & 0.2 & 0.2 \\
\hline 10/1 & 964 & 964 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/1 & 443 & 443 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11/2 & 521 & 521 & - & - & - & 0.0 & 0.0 & - & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12/1 & 163 & 163 & - & - & - & 0.0 & 0.0 & - & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline 13/2+13/1 & 156 & 156 & - & - & - & 1.4 & 0.5 & - & 1.9 & 44.4 & 2.7 & 0.5 & 3.2 \\
\hline 14/1 & 443 & 443 & - & - & - & 0.3 & 0.5 & - & 0.8 & 6.6 & 4.0 & 0.5 & 4.5 \\
\hline 14/2 & 495 & 495 & - & - & - & 0.6 & 0.5 & - & 1.1 & 7.7 & 7.2 & 0.5 & 7.7 \\
\hline 14/3 & 139 & 139 & - & - & - & 1.5 & 0.5 & - & 2.0 & 51.6 & 2.8 & 0.5 & 3.3 \\
\hline
\end{tabular}

Full Input Data And Results
```

