Taylor Wimpey

Land adjacent to Swanbridge Road, Sully

Transport Assessment

December 2016

Contents

1 INTRODUCTION 5
2 EXISTING CONDITIONS 6
Site Location 6
Existing Travel Behaviour 7
Local Facilities 7
Accessibility by Non Car Modes 8
Walking 9
Cycling. 11
Bus 13
Rail. 15
Summary 15
Learner Travel - Safe Routes to Schools 15
Learner Travel, Statutory Provision and Operational Guidance - June 2014 16
Summary 17
Local Highway Network 17
Cog Road 18
Swanbridge Road 19
Sully Road 20
B4267 South Road 20
Junctions 20
Cog Road / Sully Road / Swanbridge Road 20
Cog Road / South Road 21
Swanbridge Road / Lavernock Road / Beach Road / South Road 21
Background Traffic Flows 21
Road Safety Assessment 21
3 POLICY 23
National Policy 23
Planning Policy Wales (Edition 8, January 2016) 23
Technical Advice Note 18: Transport 24
Technical Advice Note 12: Design 25
Manual for Streets 26
Wales National Transport Plan (March 2010) 26
A Walking and Cycling Action Plan for Wales 2009-2013 27
Wales Transport Strategy (Connecting the Nation) 27
Active Travel Act (Wales) 2013 27
Local Policy 28
The Vale of Glamorgan Unitary Development Plan 28
The Vale of Glamorgan Deposit Local Development Plan 2011-2026 29
4 DEVELOPMENT PROPOSALS 31
Overview 31
Masterplan 32
Site Access 33
Pedestrians \& Cyclists 33
Travel Plan 36
Sustainable Travel to Local Schools 36
Vehicular Access 37
Walking \& Cycling 37
Parking 37
Construction Impact 38
Summary 38
5 HIGHWAY NETWORK ASSESSMENT 39
Committed Development 41
Highway Assessment 43
Summary 45
6 TRANSPORT IMPLEMENTATION STRATEGY (TIS) 46
Walking Strategy 47
Proposed Development 48
Summary 50
Cycling Strategy 50
Proposed Development 51
Summary 52
Public Transport Strategy 52
Proposed Development 52
Travel Plan 52
Summary 53
7 SUMMARY AND CONCLUSION 54
Summary 54
Conclusion 55

FIGURES

Figure 2.1 Site Location

Figure $2.2 \quad 15$ \& 30 Indicative Walking Isochrones
Figure $2.3 \quad 15$ \& 30 Indicative Cycling Isochrones
Figure 2.4 Safe Routes to Schools
Figure 2.5 Local Highway Network
Figure 4.1 Indicative Masterplan
Figure 6.1 Walking Strategy Plan
Figure 6.3 15 \& 30 Indicative Cycling Isochrones
Figure 6.3 Cycle Routes in the Vicinity of the Site

APPENDICES

Appendix A Background Traffic Flows

Appendix B TAA (2015)
Appendix C TRICS Outputs
Appendix D Distribution of New Trips
Appendix E Committed Development Flows
Appendix F Interim Travel Plan
Appendix G PIC Data

1 INTRODUCTION

1.1 Vectos has been retained by Taylor Wimpey to provide traffic and transportation advice in relation to an outline application for the proposed development of up to 190 residential dwellings on land located to the west of Swanbridge Road, Sully.
1.2 The site is part of that allocated in the emerging Vale of Glamorgan Local Development Plan for residential development of up to 500 houses (Housing Allocation MG2 (25)), of which 350 have received a resolution to grant under application 2013/01279.
1.3 This Transport Assessment provides an overview of the proposed development and considers the potential effect of the development (190 dwellings) on the local highway network. This has been undertaken with the benefit of discussions with highway officers at the Vale of Glamorgan Council (VoGC).
1.4 This remainder of this report is structured as follows:

- Section 2 - provides an accessibility audit of the site;
- Section 3 - provides a brief overview of national, regional and local policy;
- Section 4 - describes the proposed development, access arrangements and the suitability of the proposed development in terms of non-motorised modes and public transport;
- Section 5 - includes the traffic generation of the proposed development and considers the effect of the proposed development;
- Section 6 - provides details of the Transport Implementation Strategy including an Interim Travel Plan; and
- Section 7 - provides a summary of the report and an overall conclusion.

2 EXISTING CONDITIONS

2.1 This section of the report provides an overall description of the site in the context of its local surroundings and general movement characteristics of the surrounding area.

Site Location

2.2 The site is located on the eastern fringe of Sully to the west of Swanbridge Road. The centre of Sully is approximately 5 km from Penarth town centre and 4 km from the town centre of Barry. Sully has a population of approximately 4,543 and comprises of a mix of local facilities including a primary school, a local convenience store, post office and doctor's surgery.
2.3 The site is bound to the north by Cog Road and to the east by Swanbridge Road, both of which are local 'Distributor Roads'. Existing residential development lies to the west of the development land and to the south is the disused Penarth to Barry Railway Line. Beyond this is further residential development.
2.4 The location and extent of the site is shown shaded red in Figure 2.1 below.

Figure 2.1 - Site Location in a Local Context

2.5 The predominant land use to the south and west of the site is residential, whilst to the north and east it is agricultural use. The existing land use at the site is agricultural land.

Existing Travel Behaviour

2.6 The existing travel patterns for journeys to work were investigated for the Sully ward. This useful data provides an understanding of the existing travel behaviour of residents in the area. Table 2.1 shows the mode splits from this ward, taken from the 2011 Census data.

Table 2.1 - Method of Travel to Work (2011 Census)

	Sully (Ward)	The Vale of Glamorgan (County)	Wales (Country)
Work Mainly at or from Home	6%	5%	5%
Underground, Metro, Light Rail, Tram	0%	0%	0%
Train	3%	5%	2%
Bus, Minibus or Coach	3%	3%	5%
Taxi	0%	0%	0%
Motorcycle, Scooter or Moped	1%	1%	1%
Driving a Car or Van	75%	69%	67%
Passenger in a Car or Van	5%	6%	7%
Bicycle	2%	1%	1%
On Foot	4%	9%	11%
Other Method of Travel to Work	1%	1%	1%

* not in employment figures have been excluded from this table
2.7 The data summarised in Table 2.1 illustrates that the existing residents of Sully are currently heavily dependent on private cars for travel to work.
2.8 It follows therefore, that new residents in Sully would be expected to have similar travel habits unless alternative provision / choice for travel is created.
2.9 As such, there is scope to influence and alter the travel habits of existing and future residents in this area by improving travel choice and creating a culture of travel which views other modes of travel as a viable alternative to the car.

Local Facilities

One of the primary factors to be considered when determining the suitability of a new development is its proximity, accessibility and connectivity in relation to key local facilities by non-car modes.
2.11 There are a number of local facilities and amenities within a reasonable walking distance from the site. These are summarised in Table 2.2.

Table 2.2 - Local Facilities

Facility	Name	Walking Distance (metres)	Walking Journey Time (mins)	Cycling Journey Time (mins)
Primary School	Sully School, Burnham Avenue, CF64 5SU	1200	14	5
Post Office	Sully Post Office, South Rd, CF64 5SN	1000	12	4
Local Convenience Store	One Stop Stores, South Road, CF64 5SL	1000	12	4
Library	Mobile Library, Sully Sports	1100	13	4
Optician	Jane Thomas, South Road, CF64 5SL	1000	12	4
Doctor	Sully Surgery CF64 5TG	1000	12	4
Hairdresser	The Salon, Cog Road	700	8	3
Public House	The Seashore Grill + Restaurant	1300	16	5
Community Hall	The Old School, South Road	1000	12	4
Community Hall	Jubilee Hall, Smithies Avenue	1200	14	5
Public House	Captains Wife, Swanbridge Road	1300	16	5
Bus Stops	Sully Post Office	1000	12	4

2.12 Table 2.2 demonstrates that the site is well connected and accessible by foot (8-16 minutes) or by bicycle (under 10 minutes) to a wide range of local amenities in Sully, including bus stops, the local primary school, food stores and other local amenities. The site fully complies with local and national policy in this respect offering real transport choice, improving health and well-being and being socially inclusive.

Accessibility by Non Car Modes

2.13 New developments are to be designed to encourage more trips to be made by more sustainable modes including walking, cycling or on public transport in an effort to maximise social inclusion and minimise the number of single occupancy private car trips. Providing
travel choice is policy compliant and essential in terms of today's modern and dynamic society.

Walking

Whilst there will always be some short trips for which a car is the most convenient choice, such as carrying heavy shopping, many short journeys can be done on foot, and therefore walking can contribute significantly to a sustainable travel strategy for the development.
2.15 The benefits of walking include:

- It is cheaper in terms of expenditure when compared to the private car or public transport;
- It is convenient, and can provide pleasure and enjoyment;
- It is good exercise, and can form part of a healthy lifestyle; and
- It is environmentally friendly, with no air or noise pollution and no carbon footprint.
2.16 Whilst there are currently limited pedestrian facilities along Cog Road and none along Swanbridge Road there is a comprehensive footpath network adjacent to the western boundary of the site which serves the existing residential areas of Conybeare Road and Arlington Drive.
2.17 Whilst it is not possible for vehicular traffic to travel between Conybeare Road and Arlington Road, pedestrians are able to walk from Cog Road through to South Road using the existing footpath network which in part is segregated from the residential estate roads.
2.18 The existing footpath facilities are shown in the photographs below.

The thrust of local and National Land Use and Transport Policy is to promote and encourage the choice of walking and cycling above all else where travel needs to occur. Therefore, it is both reasonable to assume that walking is a viable and growing means of travel, and that new development, such as this one, should be designed to promote and encourage it. Section 4 explains the design principles for the site.
2.21 We know that schoolchildren already typically walk to school. The National Travel Survey explains that most (79\%) primary school children living within 1.6 km (1 mile), and most (89%) secondary school children living within $1.6 \mathrm{~km}(1 \mathrm{mile})$ walk to school. Between 1.63.2 km , or 1-2 miles, the walking distances are 29% and 54% for primary and secondary school children respectively. The proposed development is located approximately 1.2 km from the nearest primary school. We also know that 40-50\% of all traffic on the roads during the AM peak hour is school / education related, hence, there is a real opportunity to influence this through design and choice.

In practice, the distance that any individual is likely to choose to walk depends on that individual and the circumstances, but it is fair to assume that over time, given current policies to encourage community, health and wellbeing, the propensity for individuals to walk, and to walk further, will increase.

Figure 2.2 indicates the walking isochrones of 15 and 30 minutes walking time from the furthest point of the site (furthest dwelling on the site) assuming a comfortable average walking speed of $5 \mathrm{~km} / \mathrm{hr}(3 \mathrm{mph})$. This demonstrates that Sully is within a comfortable 15
minute walk from the proposed development. Indeed these indicative isochrones demonstrate that the local schools and facilities are mostly within a 15 minute walk, and all are within a 30 minute walk from the site.

Figure 2.2-15 \& $\mathbf{3 0}$ indicative minute walking isochrones

Cycling

The existing dedicated cycle infrastructure within Sully is in its infancy whereby there are no formal cycle routes within the immediate vicinity of the site, nevertheless there is a shared cycleway/footway provided between Penarth and Barry following Lavernock Road and South Road. The site is suitably well located to enable cyclists to access this facility from the existing residential estate roads. The following photographs show the facilities at the junction with Swanbridge Road. The nature of many of the quieter local road lend themselves to cycling as a mode of travel for short to moderate distances.

2.25 South Road benefits from good quality cycle facilities, with dedicated off road sections between Hayes Road and Cog Road and to the east from Elm Close to Penarth.
2.26 Figure 2.3 indicates the cycling isochrones of 15,30 , and 45 minutes from the furthest part of the site (furthest dwelling on site), assuming a comfortable average cycle speed of $15 \mathrm{~km} /$ hr (9 mph). Sustrans has suggested ${ }^{1}$ that up to 5 miles is an appropriate distance for cycle commuting. This equates to 33 minutes at this speed.
2.27 This demonstrates that Barry, Penarth, and Dinas Powys are all within a 30 minute cycle from the site. All of Sully is easily within a 15 minute cycle from the site, travelling at a comfortable speed. These isochrones demonstrate that the proposed development is located within suitable reach of any local facilities and major retail areas and areas of interest.

[^0]Figure 2.3 - 15, 30 \& 45 indicative minute cycling isochrones

Bus

There are currently two regular bus services that serve Sully and provide a frequent service between Barry and Cardiff via Penarth.

The 94 Service is operated by Cardiff Bus and provides a half hourly service between Barry and Cardiff via Penarth between Monday and Saturday. An hourly service is provided on Sunday and Bank Holidays.

The 88 service is operated by First Bus and provides a frequent service between Barry and Penarth. An hourly service is provided between Monday and Saturday. There are no services provided on Sundays or Bank Holidays.

Both existing bus services provide regular and convenient linkages to branch line railway stations at Cadoxton and Penarth.

Details of the existing bus services are shown in Table $\mathbf{2 . 3}$ however there are also regular school bus services serving the existing residential areas of Sully providing school bus travel to Penarth and Barry.

A summary of all the services which serve these bus stops is provided in Table 2.3.

Table 2.3 - Summary of Bus Services in the Vicinity of the Site

Route No.	Route	Mon - Friday		Saturday		Sunday		Operator	Nearest Stop
		First	Last	First	Last	First	Last		
88	Barry - Sully - Penarth	0715	1815	0715	1815	-	-	Harton Coaches	Post Office
	Penarth - Sully - Barry	0738	1838	0738	1838	-	-	Harton Coaches	Post Office
94	Barry - Sully - Penarth - Cardiff	0630	2232	07:33	22:32	07:01	22:25	Cardiff Bus	Post Office
	Cardiff - Penarth - Sully - Barry	0737	2327	07:43	23:27	08:02	23:28	Cardiff Bus	Post Office
P133 (School Service)	Sully - St Joseph's RC Primary School	08:50	-	-	-	-	-	N.A.T. Group	Post Office
	$\begin{gathered} \hline \text { St } \\ \text { Joseph's } \\ \text { RC } \\ \text { Primary } \\ \text { School } \end{gathered}$	16:24	-	-	-	-	-	N.A.T. Group	Post Office

2.34 There are a number of bus stops located along South Road. The closest stops which are accessible via continuous footways from the development site are the Post Office stops near the junction with South Road and Arlington Drive. A zebra crossing on South Road assists pedestrians to cross at this location in order to access the Barry bound services.
2.35 There are also bus stops with shelters that are located to the west of the Lavernock Road/ Swanbridge Road junction which are closer to the development site. These would be the closest to the development.

The bus stops located at the Post Office and on Lavernock Road/ South Road junction are circa 1000 m from the site using the existing footpath network that runs parallel to the western boundary of the site.

Rail

There are good public transport linkages from the site via bus and train with regular services to Cardiff, Penarth and Barry. This level of public transport, both bus and rail offers real travel choice for new and existing residents.

Learner Travel - Safe Routes to Schools

2.41 The Learner Travel (June 2014) guidance supersedes the 'Safe Routes to School' initiative. The aim of this guidance is to ensure that major new developments can confirm at least one safe walking route to local schools. This links to the Active Travel (Wales) Act 2007, which aims to change how people travel, resulting in greater social inclusion and improved community safety.
2.42 The site already benefits from the route indicated in Figure 2.4 to the nearest school, in accordance with the Learner Travel guidance, and the Active Travel (Wales) Act. This demonstrates that the site is in keeping with this guidance.

Figure 2.4 - Safe Routes to Schools

Learner Travel, Statutory Provision and Operational Guidance - June 2014

2.43 The Learner Travel guidelines were published by the Welsh Government in 2014. Section 1, chapter 5 sets out the Risk Assessment of Walked Routes to School.
2.44 Although the guidelines state that local authorities and not the developer are required to 'assess the travel needs of learners walking to school', in keeping with our ethos for sustainable and attractive communities, the walking route guidance is summarised in the following.
2.45 The guidance states that for a route to be considered 'available' it needs to be:

A continuous adequate footway on roads which carry medium to heavy traffic flow; or 'Step-offs' on roads which have low traffic flow but adequate sight lines to provide sufficient advance warning to drivers and pedestrians; or

On roads with very low traffic flow, no 'step offs', but sufficiently good sight lines to provide adequate advance warning.

Where there is a need to cross the following provisions should be in place:

- Pedestrian refuges; or
- Visibility - good enough to allow vehicles to stop given the $85^{\text {th }}$ percentile speed rule (or the speed at which no more than 15% of the traffic is exceeding); or
- Sufficient gap in the traffic flow and sight lines to allow enough opportunities to cross safely; or
- Sufficient crossing facilities (for example, zebra, pelican crossings); or
- Sufficient pedestrian phases at traffic lights (including necessary refuges; or
- Sufficient school crossing patrols.
2.47 Additional factors should be considered in assessing the safety of a route, the most prevalent of these is careful consideration of the accident data.

This guidance document also details their thresholds for traffic flow, to robustly assess any walking route in accordance with their requirements, including unobstructed, lit footpaths of sufficient width.

Summary

In line with the guidelines set out above, the current route from the site to the neighbouring school as well as facilities are complies with various points within the Learner Travel.

Local Highway Network

Figure 2.5- Local Highway Network

Cog Road

Cog Road is an unclassified road that forms part of the adopted highway network and links South Road (B4267) with Swanbridge Road and Sully Road. There is no street lighting present on the rural section of Cog Road, however there is sufficient street lighting along the residential section. Cog Road is subject to a 30 mph speed limit between its junction with South Road and a point 100 m to the east of the junction with Conybeare Road. Beyond this point it is de-restricted and subject to the national speed limit. There are also a number of school bus stops along Cog Road.
2.52 At its lower end (south western end) Cog Road provides access to a number of residential developments on both sides of the road via estate roads. There are also a number of residential properties accessed directly from Cog Road. Cog Road has edge of carriageway and centre line markings including carriageway treatment (red surface dressing) to encourage drivers to slow down through the narrow section.

There are no footways provided on the rural section of Cog Road beyond the existing residential dwellings. On this section, a footway is present only on the southern edge of the carriageway. Between the junction with Glastonbury Road and South Road there are intermittent footways on Cog Road until it connects with the shared footway/cycleway facility on South Road.

From a point 100 m east of its junction with Conybeare Road, Cog Road becomes more rural in character with soft verges and established hedgerows on either side. Whilst there are no centreline markings along this section, the carriageway is wide enough in places to allow two vehicles to pass, however the existing width assists with reducing traffic speeds. The photographs below show the changing character of Cog Road.

Swanbridge Road

Swanbridge Road links Sully Road and Cog Road with Lavernock Road/South Road (B4267) at a junction known locally as the 'Cog Triangle' where Swanbridge Road has priority and vehicles can turn left to travel on Cog Road or continue onto Sully Road. Swanbridge Road joins with Lavernock Road / South Road in the form of a 4 arm cross-roads junction. Swanbridge Road is subject to a 30 mph speed limit approximately 20 m from the junction with Cog Road. Prior to the junction with Cog Road, Swanbridge Road is subject to the National Speed Limit.

Similar in character to the eastern end of Cog Road, Swanbridge Road provides direct access to a small number of residential dwellings along its length. At its southern end towards South Road/Lavernock Road, residential dwellings are located on either side with vehicular access provided. There are no footways provided along Swanbridge Road at this location. At its northern end it provides direct access to a number of dwellings on both side of the road again without any dedicated footway provision.

Whilst there are no centreline markings along Swanbridge Road, it is wide enough to allow two vehicles to pass for much of its length. At the lower end towards South Road, the carriageway narrows where it passes under the disused railway line bridge. The height
restriction is 15 ft 3inches (4.6 m) and signage on site advises high vehicles to travel under the bridge in a single stream.

Sully Road

Many of the local facilities in the area such as the GP surgery, local shop, post office and Library are all located along South Road. There are also a number of bus stops located on both sides of South Road.

Junctions

Cog Road / Sully Road / Swanbridge Road

This junction, locally known as the 'Cog Triangle' is located to the north east of the site and takes the form of two linked priority junctions. At this junction, priority is given to Sully Road, There are no pedestrian crossing facilities at this junction.

Cog Road / South Road

The Cog Road / South Road junction is located to the south west of the site and takes the form of a priority T-junction. There is an opportunity for pedestrians to cross Cog Road at this junction via dropped kerbs and a pedestrian refuge island. There is also an informal cycle crossing across South Road approximately 30 m west of the junction.

Swanbridge Road / Lavernock Road / Beach Road / South Road

This junction is located to the south of the site and takes the form of a priority crossroad junction where priority is given to South Road and Lavernock Road. There are dropped kerbs on Swanbridge Road to allow cyclists and pedestrians to cross. The speed limit of South Road, Swanbridge Road and Lavernock Road is 30 mph , however the speed limit of Beach Road is subject to National Speed Limit prior to the junction.

Background Traffic Flows

It is not the purpose of planning policy to protect the convenience of the car commuter. Other planning issues, such as growth, designing for community, social inclusion and sustainability often take higher priority. However, in the context of new development, it is appropriate to understand the likely degree of inconvenience to car users associated with growth and development.

The observed traffic flows used in the 2013 TA for 350 units, and the subsequent TAA (2015) and Sensitivity Assessment (2016) have been used in this assessment, to more accurately assess the entire 500 dwelling site as a whole. The background traffic flows are included in

Appendix A.

Road Safety Assessment

Collision data was obtained for the area within the cordon shown in the following, which includes those roads that form the main transport routes to and from the development site. The PIC data was obtained for the last 5 year period 2011 to 2015. This data is included in

Appendix G

Analysis of the collision data shows that:

- There were 40 PIC's recorded during the study period;
- Of these, 40 PIC's, 5 were recorded as serious and the remaining 35 were recorded as slight.
2.70 The following chart shows the profiles and severity of the PIC's within the survey area during the 5 year period. The number of collisions has decreased since 2012.

Chart 2.1 - PIC Summary

3 POLICY

National Policy

Planning Policy Wales (Edition 9, November 2016)

3.1 Planning Policy Wales sets out the current land use planning policies of the Welsh Government. This is supplemented by a series of Technical Advice Notes. In terms of transport related policies it places the sustainability of development at the heart of the decision making process (para 4.11.4) and requires that new development proposals minimise the need to travel and increase accessibility by modes other than the private car. It requires that major generators of travel demand be located within existing urban areas that are well served by public transport, or can be reached by walking or cycling.
3.2 The principles discussed above are repeated again in PPW's Chapter 8, which deals specifically with Transport issues.
3.3 This chapter advocates that a transport hierarchy be established in relation to new developments. It continues that development be located near other related uses to encourage multipurpose trips and reduce the length of journeys (8.1.5).
3.4 In terms of plan making and development control it advises (8.7.1) that the following issues should be taken into account:

- the impacts of the proposed development on travel demand;
- the level and nature of public transport provision;
- accessibility by a range of different transport modes;
- the opportunities to promote active travel journeys, and secure new and improved active travel routes and related facilities, in accordance with the provisions of the Active Travel (Wales) Act 2013;
- the willingness of a developer to promote travel by public transport, walking or cycling, or to provide infrastructure or measures to manage traffic, to overcome transport objections to the proposed development;
- the environmental impact of both transport infrastructure and the traffic generated (with a particular emphasis on minimising the causes of climate change associated with transport); and
- the effects on the safety and convenience of other users of the transport network.

PPW also requires that the proposed access to a development should reflect the likely travel patterns involved. It should ensure that people can reach the development, as far as practicable, by walking, cycling and public transport, as well as by car (para 8.7.3).
3.6 This is a sustainable site and a natural expansion of the existing residential area. Furthermore, the developer is proposing to enhance the sustainability of the site and the area in general via the development proposals.

Technical Advice Note 18: Transport

3.7 TAN 18: Transport describes how to integrate land use and transport planning and explains how transport impacts should be assessed and mitigated.
3.8 The document states that sustainable development should be achieved by:

- Integration of transport and land use planning;
- Integration between different types of transport; and
- Integration of transport policy with policies for the environment, education, social justice, health, economic development and wealth creation.
- Integration of land use planning and development of transport infrastructure can help the Welsh Government achieve its wider sustainable development policy objectives by:
- Promoting resource and travel efficient settlement patterns;
- Ensuring new development is located where there is, or will be, good access by public transport, walking and cycling thereby minimising the need for travel and fostering social inclusion;
- Managing parking provision;
- Ensuring that new development and major alterations to existing developments include appropriate provision for pedestrians (including the with special access and
mobility requirements), cycling, public transport, and traffic management and parking/servicing;
- Encouraging the location of development near other related uses to encourage multi-purpose trips;
- Promoting cycling and walking;
- Supporting the provision of high quality, inclusive public transport;
- Supporting provision of a reliable and efficient freight network;
- Encouraging good quality design of streets that provide a safe public realm and a distinct sense of place; and
- Ensuring that transport infrastructure or service improvements necessary to serve new development allow existing transport networks to continue to perform their identified junctions.
3.9 The developer, in conjunction with the Council is seeking to improve upon the sustainable connections to this site and the area in general.

Technical Advice Note 12: Design

Paragraph 4.13 is pertinent to this development. This states that:

Movement and ease of access for all to and from development should be appraised at the strategic and local level, with a view to supporting a shift from car use to walking, cycling and public transport and recognising the need for better connectivity within areas and with the surrounding areas. Consideration should be given to the volume and relative ease of pedestrian movements, including people with mobility or sensory impairments. Similar consideration of volume and ease of movement should be given to cycle, public transport and car movements, while areas of conflict, congestion and connections should be identified throughout the area surrounding the site.
3.12 The developer, in conjunction with the Council is seeking to improve upon the sustainable connections to this site and the area in general in accordance with this policy.

Manual for Streets

The Department for Transport's 'Manual for Streets' replaced their general road and street design guidance manual 'DB32' in 2007 and specifically focuses on lightly trafficked residential streets and highways.
'By creating linkages between new housing and local facilities and community infrastructure, the public transport network and established walking and cycling routes are fundamental to achieving more sustainable patterns of movement and to reducing people's reliance on the car.'

Wales National Transport Plan (March 2010)

The Welsh Government has two aims for targeted investment in infrastructure along the South Wales, east-west transport corridor. These aims are:

- 'To improve the reliability, quality and frequency of east-west rail in South Wales; and
- To improve reliability, journey times and safety along the east-west road corridor in South Wales.'

These two infrastructure improvements may improve the feasibility of commuting to regional workplace destinations, such as Cardiff and Swansea from the proposed residential development.

Further to this, the key issue promoted in the Plan is:
'Moving people to more sustainable modes of travel will involve raising awareness of the alternatives to the private car. We will encourage the shift to public transport, and healthy options such as walking and cycling by supporting the provision of the information people need to change their behaviour and to make journey planning simpler.'

A Walking and Cycling Action Plan for Wales 2009-2013

This document aims to assist in achieving a change in behaviour which results in more people walking and cycling more often. The key objectives of the Action Plan are to:

- 'Improve the health and wellbeing of Wales through increased physical activity;
- Improve the local environment for walkers and cyclists;
- Encourage sustainable travel to combat climate change;
- Increase levels of walking and cycling through promotion of facilities; and
- Ensure that walking and cycling are prioritised in policies, guidance and funding.'

The Action Plan also assists in the delivery of objectives in a number of Assembly Government strategies, which includes:

- One Wales - the Plan will assist in the delivery of the One Wales commitment to support greater participation in walking and cycling.
- Wales Transport Strategy (Connecting the Nation) - two of the strategy's key objectives are to promote more sustainable travel option and to make walking and cycling the public's first choice for shorter journeys.

Wales Transport Strategy (Connecting the Nation)

The wider agenda of this document is to ensure that transport features strongly in the Welsh Assembly Government's policy spectrum:

- 'Getting the most out of our existing transport system;
- Making greater use of more sustainable modes of travel; and
- Reducing demands on the transport system.'

This is a sustainable, permeable, well connected site and hence it is compliant with the Wales Transport Strategy.

Active Travel Act (Wales) 2013

The Welsh Government seeks to enable more people to walk, cycle and generally travel by more active methods, so that:

- more people can experience the health benefits of active travel;
- we reduce our greenhouse gas emissions;
- we help address poverty and disadvantage, and
- we help our economy to grow by unlocking sustainable economic growth.

Local Policy

The Vale of Glamorgan Unitary Development Plan

Policy 7 of the UDP relates to Transport and states:
'Improvements to the transportation network will consist of:

Strategic transport schemes within and adjoining the existing urban areas of the waterfront strip of Penarth, Dinas Powys, Barry and Rhoose;

Local schemes necessary for environmental and safety reasons; and

Schemes to encourage travel by cyclists and pedestrians.'

Policy 8 also states:
'Developments will be favoured in locations which:
i) Are highly accessible by means of travel other than the private car; and Minimise traffic levels and associated unacceptable environmental effects.'
3.27 The Council's transportation policy objectives for the UDP are:

- 'To ensure that a balance is maintained between the need to facilitate the development of the local economy, environmental concerns and social
considerations, in order to create a safe, efficient and equitable transport network for the Vale of Glamorgan;
- To maintain and improve access to employment and services;
- To ensure that developments are accessible by means of travel other than the private car;
- To encourage greater use of public transport, cycling and walking;
- To safeguard road lines and routes / sites of approved transport schemes;
- To improve the safety and convenience of all means of transport; and
- To ensure that adequate parking facilities are provided in accordance with the Council's approved parking guidelines.'

The Vale of Glamorgan Deposit Local Development Plan 2011-2026

The Vale of Glamorgan Deposit LDP Written Statement was prepared in 2013. The Deposit LDP concentrates on the issues that the Council consider necessary to address in order to protect and enhance the environment of the Vale of Glamorgan whilst providing detailed guidance for future development proposals.

Policy SP7 relates to Transport and states:

- The aim is to provide sustainable transport improvements that serve the economic, social and environmental needs of the Vale of Glamorgan.
- Reducing the need for Vale of Glamorgan residents to travel to meet their daily needs and enabling them greater access to sustainable forms of transport.

The Deposit LDP aims to improve the transportation network through:

- Strategic transport schemes within and adjoining existing urban areas;
- Local schemes are necessary for environmental and safety reasons;
- Schemes encourage travel by cyclists and pedestrians.

The councils transportation policy objectives are:

- Improved access to services, facilities and employment, partially, by public transport, walking and cycling ;
- Provide a transport system that increases the use of sustainable modes of travel;
- Reduce the demand for travel;
- Develop an efficient and reliable transport system with reduced levels of congestion and improved transport links within the Sewta region;
- Provide a transport system that encourages healthy and active life styles, is safer and supports local communities;
- Reduce significantly the emission of greenhouse gases and air pollution from transportation;
- Ensure that land use development in south east Wales is supported by sustainable transport measures; and
- Make better use of the transport system.

Summary

3.32 It is considered that the proposed development at Cog Road, Sully complies with relevant national and local policies, adopted and emerging, as it is located in close proximity to existing public transport services, cycle infrastructure and the pedestrian network. The site;

- Promotes the use of more sustainable travel options;
- Promotes walking and cycling for shorter trips; and
- Reduces, where practical, the need to travel by car.

Furthermore, the site forms part of a housing allocation (MG2-46) within the LDP.

4
 DEVELOPMENT PROPOSALS

Overview

4.1 The proposals for the sustainable residential development at Sully, includes the provision of up to 190 dwellings located to the immediate south of the recently approved scheme for 350 dwellings accessed from Cog Road and Swanbridge Road.
4.2 The site offers direct connections to the existing residential areas of Sully and offers real travel choice from the existing local public transport facilities (bus and rail).
4.3 There are four key stages to creating a socially inclusive community, hereby encouraging community interaction (within and neighbouring the scheme), in such a way to encourage non-motorised travel modes, prioritising walking ad cycling, followed by use of the bus.
4.4 Design is in terms of creating communities, where public interaction, outdoor and indoor, is the norm. Where friends and day to day activities are nearby and easy to get to, and where it is not an automatic reaction when leaving home to get into a car. The site is well placed to take advantage of the proximity of a range of day to day facilities.
4.5 The site design is of a pedestrian scale. Walking, cycling, and using a bus, will be easy, and vehicle intimidation will be at a minimum.
4.6 Choice is in terms of providing the infrastructure and facilities to minimise reliance on any single option. This widens social inclusion, and for instance, on average, makes contributing to commuter car congestion more of a choice and less of a necessity.
4.7 Through increased choices a change in behaviour can be effected. The proposals will introduce and maintain any sustainable transport options through the measures detailed in the remainder of this section, and seek to encourage a net travel behavioural change.
4.8 Behaviour is in terms of educating people in the options and consequences. It brings together awareness, health, environment and personal convenience.
4.9 Finally, one of the 'by design' aims is to create an environment where less people automatically choose to use their cars when leaving their homes, therefore decreasing the impact on the road network. These proposals strive to not only influence the traffic impact of the proposed development, but also the surrounding communities.

Network Management is in terms of managing the road network in accord with the user hierarchy preferred by the Council. Car travel is the lowest capacity network in terms of space occupied per person. It also occupies the lowest priority in the user hierarchy. This means, for instance, prioritising the reliability and speed of bus and cycle movement over that of cars in the commuter peaks.

Masterplan

4.11 Manual for Streets (MfS) and Manual for Streets 2 (MfS2) is used as a framework for the design philosophy, encompassing a comprehensive movement strategy which will inform and shape the layout of the streets serving the development. In particular, the movement strategy will focus on the movement hierarchy within MfS2 with priority given to pedestrians, cyclists and other vulnerable road users.
4.12 The indicative masterplan for the site is shown in Figure 4.1.

Figure 4.1 - Indicative Masterplan for Cog Road, Sully

Site Access

The site will be developed in line with the principles of Manual for Streets and Manual for Streets 2 (MfS). The site will follow a clear hierarchical approach with respect to site users, with pedestrians and other vulnerable road users are at the top of this hierarchy, and the emphasis on creating a sustainable development which links to the surrounding residential development and existing local facilities with well-connected pedestrian and cycle networks.

Vehicular access is to provided from the 350 dwelling scheme as indicated on the masterplan

Pedestrians \& Cyclists

The aim is to provide an environment in which pedestrians and cyclists will feel as though they are generally of highest priority. Pedestrian routes will be direct, convenient and attractive, and contribute to the sense of place created by the design and layout of the site. The development will seek to maximise and enhance the permeability of the site to cyclists and aim to encourage cycling as a mode of transport for short trips, taking advantage of the

NCN route 88. A new pedestrian link is to be formed on the western boundary to linkto the existing footpath network.
4.17 Whilst there are no formal cycle routes within the immediate vicinity of the site, apart from a shared cycleway/footway which is provided between Penarth and Barry following Lavernock Road and South Road, the site is suitably well located to enable cyclists to access this facility from the existing residential estate roads. The following photographs show the facilities at the junction with Swanbridge Road.

South Road benefits from good quality cycle facilities, with dedicated off road sections between Hayes Road and Cog Road and to the east from Elm Close to Penarth.

Whilst there are currently limited pedestrian facilities along Cog Road and none along Swanbridge Road there is a comprehensive footpath network adjacent to the western boundary of the site which serves the existing residential areas of Conybeare Road and Arlington Drive.

Whilst it is not possible for vehicular traffic to travel between Conybeare Road and Arlington Road, pedestrians are able to walk from Cog Road through to South Road using the existing footpath network, which in part is segregated from the residential estate roads.
4.21 The existing footpath facilities are shown in the photographs below.

4.22 Proposals to enhance the non-vehicular environment on South Road were included in the TAA (2015) for the consented scheme for 350 dwellings. These proposals are illustrated in Appendix B, and are summarised in the following:

- Existing pedestrian Zebra crossings placed on new raised tables, with improved lighting;
- 'SLOW' markings and coloured surface dressing added to carriageway to increase driver awareness;
- A raised table at the South Road/Swanbridge Road junction; and
- A new Zebra pedestrian crossing close to the South Road/Cog Road junction.
4.23 It is considered that these measures will increase driver awareness of pedestrian activity, leading to lower speeds and a more comfortable environment for pedestrian movement and the more vulnerable road users.
4.24 The additional pedestrian crossing will be of benefit to pedestrians at the western end of Sully and bus users including school children accessing the bus stop outside the Church Hall. It is understood that local school buses that previously collected children at the 'One Stop' shop on South Road now use the Sully Church stop.

Travel Plan

The developer commits to providing a comprehensive Travel Plan, which will include the measures and improvements set out in this section, as well as significant investment in personalised travel planning (PTP).

Travel patterns in the area will change as a result of new developments, however there is no reason to suppose that this change will result in an increase in total movements or congestion.

The proposed development can deliver physical infrastructure that can influence travel choice. It can also deliver behavioural change measures such as travel planning, which, combined with the physical measures, seek to make a difference to travel patterns for the proposed new development and the existing community.

Sustainable Travel to Local Schools

As part of the overall sustainable strategy of the site, it is important to consider journeys made for education purposes. National Statistics ${ }^{2}$ suggest that some 50\% of all journeys during the morning peak hour are related to education. Of these education trips, travel by car accounts for 46% and 23% of journeys to primary and secondary schools respectively. Hence it is important to consider this when reviewing the opportunity to encourage sustainable travel to the local schools in Sully and Penarth.

The site is within 2 km of Sully Primary School by foot.

For local schools currently without a Travel Plan, the eventual measures are undefined at present but may include;

- Walking buses
- Cycling trains
- Parents' shelters
- Secure / sheltered scooter parking
- Secure / sheltered cycle parking
- Bike to school days

[^1]- Bikeability days / cycle/ scooter proficiency days / cycle festivals
- Sustainable travel meal days
- Provision of high visibility gear

Vehicular Access

Vehicular access is taken from the recently consented 350 dwelling scheme to the north of the proposed site. An internal spur will provide access to the 190 dwellings and will comprise of a spine road serving a number of small cul-de-sacs and private driveways.

The road network within the site will be designed in accordance with the layout of the 350 dwellings scheme.

The intention is to create an environment within the site in order to encourage pedestrian and cycle activity and to prioritise social inclusion before the private car / motorist.

Walking \& Cycling

Walking and cycling provision is adjacent to the western boundary of the site, which serves the existing residential areas of Conybeare Road and Arlington Drive.

Parking

Parking will be provided in accordance with VOGC parking standards as set out it the CSS 'Wales Parking Standards' (2008). The parking standards for a residential development in Zones 2-6 are shown in Table 4.1.

Table 4.1 -Parking Standards for Residential Development (Zone 2-6)

Type of Development	Residents	Visitors
General Purpose Houses and Apartments		
Houses	1 space per bedroom (maximum	1 space per 5 units
requirement 3		
spaces)		

Parking will be provided in line with the parking standards shown in Table 4.1

Construction Impact

4.40

The environmental effect relating to traffic will be set out within a separate Construction Environmental Management Plan (CEMP) which is anticipated to form part of a positive Planning Condition.

The CEMP will set out how the effect of construction traffic will be managed on the local highway network during the anticipated constriction period. The purpose of a CEMP is to ensure that the effect of construction traffic is mitigated against, particularly in relation to local residents and any air quality issues and seeks to control, the timings, routing and volume of traffic entering/leaving the site during this period.

All construction traffic will enter and leave the site via Cog Road.

Summary

 In summary, the proposed development is designed to promote choice, encourage and accommodate a positive change in the propensity for more socially inclusive and sustainable living travel.The location and accessibility of the site are excellent, and the proposals will have ancillary benefits for the neighbouring communities. Walking and cycling are encouraged by design within the site, and in the nature of the linkages to the surrounding community.

5 HIGHWAY NETWORK ASSESSMENT

5.1 The previous Transport Assessment for the consented scheme assessed the effect of 500 residential dwellings at this site, to incorporate the LDP allocation which includes the 350 dwellings now committed. It has done so on the basis that the development will generate traffic demand in the same way that the existing community does. l.e., there has been no reduction for the effects of a difference in design, travel planning and improved walking, cycling and public transport facilities. It makes no allowance for a reduction in background trips or any sustainability initiatives that one might expect the County to implement over the years and which are anticipated as a direct consequence of this development. As such it is a very robust and worst case assessment.
5.2 This application increases the overall number of dwellings on the allocated site to 540 hence a net increase of 40 units.

Scope of Assessment

5.3 The extent of the highway network being considered for assessment purposes is the same as the assessed for the 350 dwellings scheme that was recently granted planning consent.

Trip generation and Distribution

5.4 This section contains information on the trip generation and distribution of trips associated with the proposed development.

Trip Rates

5.5 The Trip Rates for the proposed residential development have been derived from the TRICS database. TRICS is an industry-wide recognised database containing trip rate information, and interrogating the TRICS database to calculate trip rates by land use represents an established and accepted methodology. It is widely used as part of the planning process by both developer consultants and local authorities.
5.6 TRICS contains over 6,300 transport surveys at a wide range of development sites across all regions of the UK and Ireland. A filtering system allows sites to be selected which fit within required parameters and can therefore be considered representative of a development site. The trips rates derived from this exercise are average since $85^{\text {th }} \%$ ile trip rates could not be
achieved due to the low number of comparable sites. These are demonstrated in Table 5.1 and the output is contained in Appendix C.

Table 5.1- TRICS Vehicular Trip Rates (Residential) - per dwelling

	Arrivals	Departures	Totals
AM	0.153	0.37	0.523
PM	0.382	0.207	0.589

5.7 As a means to validate the TRICS trip rates, a survey was undertaken of Bassett Road, a cul-de-sac close to the proposed site. Due to its location and mix of house types, Bassett Road is considered to be a realistic comparator. The trip rates from this survey are shown in Table
5.2.

Table 5.2 - Observed Trip Rate (per dwelling)

Period	Inbound	Outbound	Two-way
$\mathbf{0 8 : 0 0 - 0 9 : 0 0}$	0.167	0.194	0.361
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	0.315	0.204	0.519

5.8 Applying the vehicular trip rates as summarised in Table 5.1 to the development of 190 dwellings results in a total number of vehicular trips as summarised in Table 5.3.

Table 5.3 - Total Vehicular Trips

	Arrivals	Departures	Totals
AM	29	70	99
PM	73	39	112

Trip Distribution

5.9 As agreed with VoGC highway officers for the consented development of 350 dwellings, the vehicular trip distributions were based on census data along with the existing distributions at junctions on the local highway network. However in order to quantify the effect at the local junctions, a judgement has been made on the anticipated distribution based on Census 2001 travel to work data:

- 50% of development traffic on Swanbridge Road towards the Lavernock Road junction (east)
- 40% of development traffic on Cog Road towards South Road junction (west)

Traffic Growth

Due to the baseline data being derived from a variety of sources, a common base year of 2013 has been created by using Tempro derived NTM growth factors. These are shown in Table 5.4, along with the growth factors used to adjust the base flows to the future years of 2018 and 2026.

Table 5.4-Tempro NTM Growth Factors

$2011-2012$	1.0047
$2012-2013$	1.0058
$2013-2018$	1.0538
$2013-2026$	1.1728

Committed Development

10% of development traffic on Sully Road (north)

For the 350 residential unit application, a sensitivity assessment was included that considered the effects of the full allocation (Housing Allocation 46 - Reserve Site (MG 2(46)) as described in the Deposit Local Development Plan

The distribution of new trips from the proposed development is shown in Appendix \mathbf{D}.

The aforementioned granted scheme for 350 dwellings has been included in the development traffic assessment, to complete the LDP provision at this site.

As also requested by VoG, the assessments include the traffic from the committed developments at St Cyres School and Barry Waterfront. The flows for these have been abstracted from the TA's submitted as part of the applications at the two sites. The committed development flows are illustrated in Figures 5.1 and 5.2 for the AM and PM peak respectively. The committed development flows are included in the Base 2013 traffic flows.

The flows for this committed development are included in Appendix E.

Highway Network

5.17 The local highway network was assessed for 350 and 450 dwellings in the 2013 TA, as well as the subsequent TAA in 2015. These both demonstrated that the percentage impact on the following local junctions is equal to or fewer than 5\%:

- Port Road / Barry Docks Link Road - 3 arm roundabout;
- Merrier Harrier - signal controlled junction;
- Sully Moors Road / Cardiff Road - 4 arm roundabout; and
- Cardiff Road / Redlands Road - 3 arm signal controlled junction.
5.18 The percentage impact considering a total of 500 dwellings is contained in Tables 5.5-5.7.

Table 5.5 - Percentage Impact - 2013 + Committed

Junction	Total Junction Flow				\% Impact	
	Base 2013			Development		
	AM	PM	AM	PM	AM	PM
Port Road / Barry Docks Link Road	3293	3305	74	82	2%	2%
Merrie Harrier	2497	2734	101	123	4%	4%
Sully Moors Road / Cardiff Road	3572	3629	181	204	5%	6%
Cardiff Road / Redlands Road	2513	2741	118	137	5%	5%

Table 5.6 - Percentage Impact - 2018 + Committed

Junction	Total Junction Flow				\% Impact	
	2018		Development			
	AM	PM	AM	PM	AM	PM
Port Road / Barry Docks Link Road	3449	3459	74	82	2%	2%
Merrie Harrier	2626	2875	101	123	4%	4%
Sully Moors Road / Cardiff Road	3742	3799	181	204	5%	5%
Cardiff Road / Redlands Road	2639	2878	118	137	4%	5%

Table 5.7 - Percentage Impact - 2026 + Committed

Junction	Total Junction Flow				\% Impact	
	2026		Development			
	AM	PM	AM	PM	AM	PM
Port Road / Barry Docks Link Road	3794	3800	74	82	2%	2%
Merrie Harrier	2911	3187	101	123	3%	4%
Sully Moors Road / Cardiff Road	4119	4176	181	204	4%	5%
Cardiff Road / Redlands Road	2917	3187	118	137	4%	4%

These tables indicate that the total provision of 500 dwellings within the LDP has less than 5\% impact at the external junction, with the exception of Sully Moors Road/ Cardiff Road in the 2013 (plus committed) PM peak hour. However, this impact lessens to 5\% in both the 2018 and 2026 future years. The percentage impact of these development trips on these junctions are considered to be negligible in significance.

For this TA a further 40 dwellings are being considered.

Highway Assessment

5.21 The key local junctions and site access junctions have been assessed for the effect of 500 dwellings as a sensitivity assessment for the 350 units consented development.

Cog Road/South Road

5.22 A junction capacity assessment has been undertaken at the Cog Road / South Road junction based on 500 dwellings and the modified junction layout (included in the TAA 2015) which includes minor capacity improvements. Tables 5.7 and 5.8 show a comparison of the queue lengths on Cog Road based on 350, 450 and 500 dwellings with and without mitigation at the Cog Road / South Road junction. The assessment considers each 15 minute time segment within the AM and PM peak periods.
5.23 The traffic flows in Table 5.8 are based on a 2026 future year which includes 17\% growth between 2013 and 2025. The traffic flows in Table 5.8 are based on a 2013 base year.

Table 5.8 - Queue Length Comparison (2026)								
Number of	AM Peak (0800-0900)				PM Peak (1700-1800)			
	$\mathbf{0 8 0 0}$	$\mathbf{0 8 1 5 -}$	$\mathbf{0 8 3 0}$	$\mathbf{0 8 4 5 -}$	$\mathbf{1 7 0 0}$	$\mathbf{1 7 1 5}$	$\mathbf{1 7 3 0}$	$\mathbf{1 7 4 5 -}$
	$\mathbf{0 8 1 5}$	$\mathbf{0 8 3 0}$	$\mathbf{0 8 4 5}$	$\mathbf{0 9 0 0}$	$\mathbf{1 7 1 5}$	$\mathbf{1 7 3 0}$	$\mathbf{1 7 4 5}$	$\mathbf{1 8 0 0}$
$\mathbf{3 5 0}$	$5(5)$	$5(6)$	$8(9)$	$3(3)$	$2(3)$	$1(1)$	$2(2)$	$1(1)$

$\mathbf{4 5 0}$	$8(9)$	$9(11)$	$15(19)$	$6(9)$	$3(3)$	$2(2)$	$2(2)$	$1(1)$
$\mathbf{5 0 0}$	$10(12)$	$13(16)$	$21(26)$	$13(16)$	$3(4)$	$2(2)$	$2(2)$	$1(1)$

Note: () without mitigation

Table 5.9- Queue Length Comparison (2013)								
Number of	AM Peak (0800-0900)				PM Peak (1700-1800)			
	$\mathbf{0 8 0 0}-$	$\mathbf{0 8 1 5 -}$	$\mathbf{0 8 3 0}$	$\mathbf{0 8 4 5}$	$\mathbf{1 7 0 0}$	$\mathbf{1 7 1 5}$	$\mathbf{1 7 3 0}$	$\mathbf{1 7 4 5 -}$
	$\mathbf{0 8 1 5}$	$\mathbf{0 8 3 0}$	$\mathbf{0 8 4 5}$	$\mathbf{0 9 0 0}$	$\mathbf{1 7 1 5}$	$\mathbf{1 7 3 0}$	$\mathbf{1 7 4 5}$	$\mathbf{1 8 0 0}$
$\mathbf{3 5 0}$	$2(3)$	$2(3)$	$3(3)$	$2(2)$	$1(2)$	$1(1)$	$1(1)$	$1(1)$
$\mathbf{4 5 0}$	$3(3)$	$3(4)$	$4(4)$	$2(2)$	$2(2)$	$1(1)$	$1(1)$	$1(1)$
$\mathbf{5 0 0}$	$4(4)$	$4(5)$	$5(6)$	$2(2)$	$2(2)$	$1(1)$	$1(1)$	$1(1)$

5.24 The results in these tables demonstrate that:

- There are no capacity issues at the junction in the PM peak;
- The change in the queue profile between 450 and 500 dwellings at the junction is negligible and demonstrate that the capacity enhancement works have a beneficial effect;
- Mitigation reduces queues at the junction by up to 20%; and
- Once the junction model becomes unstable during the AM peak i.e. RFC >0.9, the outputs should be considered with caution and should form the basis from which informed judgements can be made.

As a comparison, the capacity at the Cog Road / South Road junction has also been tested to account for no background growth in traffic as background growth is likely to come from developments such as this. The results (as shown in Table 3) show that the junction (with improvement works) has a maximum queue of 5 vehicles with traffic from 500 dwellings.

Table 5.10-2013 + Committed + Development (500 dwellings)				
	AM Peak (0800-0900)		PM Peak (1700-1800)	
	RFC	Max Q	RFC	Max Q
	-	-	-	-
Cog Road	0.852	5	0.622	2
South Road (West)	0.093	1	0.090	1

As such, and by comparing the results from Table 5.8 and 5.9 , it is evident that the application of c. 17\% background traffic growth between 2013 and 2026 has the main effect on junction capacity rather than the addition of traffic to the total 500 dwellings.
5.27 With an additional 40 dwellings being proposed on the lower site, this results in an increase in overall vehicle movements of 20 vehicles in the AM peak and 24 vehicles in the PM peak.
5.28 For the Cog Rd/South Road junction, this results in and additional 10 vehicles per hour on the Cog Road approach arm which is approximately 1 vehicle every 6 mins in the AM peak. For the PM peak, the increase is 6 additional vehicle which equates to 1 vehicle every 10 mins.

Sully Moors Road / Cardiff Road

5.29 In the context of the Sully Moors Road/Cardiff Road junction (McDonalds Roundabout), the traffic effect from 500 units would equate to an increase in traffic of 0.3% compared to the 2026 base flows in the AM peak period.

With an increase in the number of dwellings to 540 the effect of this small increase in traffic will be negligible and not result in a noticeable impact on the operation of the junction.

Summary

The results of the junction modelling show that there are no major issues on capacity on the local junction with the proposed measures in place contained within the granted scheme for 350 dwellings. The additional 150 dwellings proposed is demonstrated to be accommodated by the local highway network.

6 TRANSPORT IMPLEMENTATION STRATEGY (TIS)

6.1 The objective of the TIS is to promote sustainable modes of transport, including walking, cycling and public transport, and minimise the proportion of single occupancy car driver trips to and from the site.
6.2 The existing travel patterns for journeys to work were investigated for the 'Sully' ward. Table 6.1 shows the mode splits form this ward, taken from the 2011 Census data.

Table 6.1 - Method of Travel to Work (2011 Census)

	Sully (Ward)	The Vale of Glamorgan (County)	Wales (Country)
Work Mainly at or from Home	6%	5%	5%
Underground, Metro, Light Rail, Tram	0%	0%	0%
Train	3%	5%	2%
Bus, Minibus or Coach	3%	3%	5%
Taxi	0%	0%	0%
Motorcycle, Scooter or Moped	1%	1%	1%
Driving a Car or Van	75%	69%	67%
Passenger in a Car or Van	5%	6%	7%
Bicycle	2%	1%	1%
On Foot	4%	9%	11%
Other Method of Travel to Work	1%	1%	1%

* not in employment figures have been excluded from this table
6.3 Whilst not representative of all journey types, it provides an indication of the approximate baseline mode split for all journeys in the area from which to base the aims and targets of the TIS.
6.4 The data summarised in Table 6.1 illustrates that the existing residents of the 'Sully' ward currently travel to work with a high proportion of car drivers (75\%), which is higher than travel to work statistics for The Vale of Gloamorgan (69\%) as a whole. Currently only 4\% of existing residents walk to work compared to 9% in The Vale of Glamorgan.
6.5 The mode split for all journeys which the TIS seeks to achieve is set out in Table 6.2. The only target is car driver, with the targets for individual sustainable travel modes indications of only what one might expect the approximate split of journeys to be, but not specific targets in their own right (i.e all non-car driver modes of travel are sustainable travel modes).

Table 6.2 - TIS Target Mode Split

Mode	Target Mode Split
Work Mainly at or From	2%
Train	1%
Bus, Minibus or Coach	7%
Taxi	1%
Motorcycle, Scooter or	0%
Driving a Car or Van	68%
Passenger in a Car or Van	9%
Bicycle	3%
On Foot	9%
Other Method of Travel	0%
Total	$\mathbf{1 0 0 \%}$

6.6 Table 6.2 demonstrates the sustainable mode split for journeys to and from (and within the site) which the TIS is seeking to achieve. The measures aimed at achieving this mode split are set out in a Walking Strategy, Cycling Strategy and Public Transport Strategy.
6.7 In addition, the TIS aims to contribute towards achieving a mode shift towards sustainable travel in the adjoining communities.
6.8 Provided the overall contribution of sustainable travel modes helps deliver the car driver target, variations from the targets for sustainable travel modes are acceptable. Indeed, in some instances it is hoped they are exceeded.

Walking Strategy

6.9 Waking as a mode of transport has significant potential to contribute to an overall sustainable travel strategy. The main points contained in the walking strategy are contained in Section 2 and ultimately come down to an offer of choice, thereby walking is just one of the many attractive, easy, and safe options.
6.10 In 2009, 20\% of all journeys made in Great Britain covered less than 1 mile, and more than half (56\%) of car journeys covered less than 5 miles (Department for Transport 2010a, Transport Trends 2009).
6.11 While there will always be some short trips for which a car is the most convenient choice such as carrying heavy shopping - many journeys can be undertaken on foot, and therefore walking can contribute significantly to a sustainable travel strategy.

6.12

The benefits of walking include:

- It's cheaper in terms of expenditure when compared to the private car or public transport;
- It's convenient, and can provide pleasure and enjoyment;
- It is good exercise, and can form part of a healthy lifestyle (the recommended amount of exercise over a week is activity which should add up to at least 150 minutes ($21 / 2$ hours) of moderate-intensity activity, in bouts of 10 minutes or more ${ }^{3}$; and
- It is environmentally friendly, with no air or noise pollution and no carbon footprint.

Proposed Development

The Proposed Development facilitates journeys on foot through the provision of:

- A new pedestrian / cycle only access to the west;
- High quality, direct and continuous walking routes;
- A hierarchy of walking routes which includes traffic free routes;
- Safe crossing points along pedestrian desire lines;
- Appropriate signage for pedestrians (and cyclists);
- Integration with other transport modes, including connections to bus routes and rail stations.
- Existing pedestrian Zebra crossings placed on new raised tables, with improved lighting; and
- 'SLOW' markings and coloured surface dressing added to carriageway to increase driver awareness;
- A raised table at the South Road/Swanbridge Road junction; and - A new Zebra pedestrian crossing close to the South Road/Cog Road junction.

[^2]6.14 The Walking Strategy to Sully Primary School is shown in Figure 6.1.

Figure 6.1 - Walking Strategy Plan

6.15 The Proposed Development includes a number of different types of pedestrian routes. In all instances at roads, there will be pavements on both sides, with some sections accommodating cyclists.
6.16 Within the site, design will be on a pedestrian scale to prioritise pedestrian movement and keep vehicle speeds low. Therefore, it is expected that uncontrolled crossing points, equipped with dropped kerbs and tactile paving, will be the most appropriate form of provision.
6.17 The proposed improvements contained in the previous TAA are shown in Appendix B and can be summarised as;

- Existing pedestrian Zebra crossings placed on new raised tables, with improved lighting;
- 'SLOW' markings and coloured surface dressing added to carriageway to increase driver awareness;
- A raised table at the South Road/Swanbridge Road junction; and
- A new Zebra pedestrian crossing close to the South Road/Cog Road junction.

The distance people are prepared to cycle depends on their fitness and physical ability, journey purpose, settlement size and the cycling conditions. In Holland, the proportion of people cycling rose from 6% in the 1970 s to 32% now because of a conscious decision by the Dutch Government to prioritise cycling and provide the infrastructure. In Bristol the cycling mode split for the journey to work is growing strongly, and reported at about 30% in some areas, and in London about 25% of rush hour traffic is cyclists.
6.23 Whilst the Welsh Government does not provide specific guidance on comfortable cycle distances, Sustrans has suggested ${ }^{4}$ that up to 5 miles is an appropriate distance.
6.24 The DfT LTN 1/04 - Policy, Planning and Design for Walking and Cycling states that the mean average length for cycling is 4 km , although people will cycle up to three times this distance to access services, facilities or their place of work/ education. It is not unreasonable to assume that people will cycle 30-45 minutes depending on the purpose of the journey. At a conservative average speed of approximately $15 \mathrm{~km} / \mathrm{h}$ (about 9 mph) this is a distance of

[^3]between 7.5 km and 11.25 km . On this basis, Figure 6.2 shows the 15 minute and 30 minute isochrones from the primary site access of the Proposed Development.

Figure 6.2 - 15, 30 \& 45 minute indicative Cycling Isochrones

Proposed Development

The Proposed Development has been designed on a pedestrian/ cyclist level. The internal cycle network will be formed of traffic free and shared cycle routes. These shared street s are designed in line with the guidance contained within Manual for Streets.

Figure 6.3 shows the cycle routes in the local area t the site, National Cycle Network route 88 runs to the east and west of the. National Cycle Route 88 is a proposed coastle route between Newport, Cardiff, Bridgend and Margam Country Park. Additional bike trails run from Cosmeston lakes to Swanbridge Road. These routes are likely to be used for recreational cycle trips, and utilised fully for commuting trips also by new residential to the areas.

Figure 6.3 - Cycle Routes in Vicinity of the Site

The proposed development will provide appropriate cycle parking provision at each residential dwelling, allowing residents to park and store bicycles safely.

Summary

The existing cycle network in the vicinity of the site is reasonable, especially for linking the site with the nearby Town/ Village Centres, Cardiff, and nearby train stations, to a wider area eased by the long distance routes available. Yet, few existing residents take advantage of this network, with only 2% of journeys to work undertaken by bicycle (2011 census).

Public Transport Strategy

Proposed Development

The site will be designed to ensure excellent pedestrian links to existing bus stops. The existing bus provision in the vicinity of the site is sufficient, with services to Cardiff, Penarth and Barry.

Easy access to Barry Rail station, which is within a sensible walking and cycling commuting distance for a multi-modal journey.

Travel Plan

6.31 The proposed development will be supported by a detailed Interim Community Travel Plan. The Travel Plan will detail the opportunities for walking within, to and from the proposed development. The Travel Plan will also outline the health, social, and economic benefits of walking. A copy of the Interim Community Travel Plan is contained in Appendix F.

Summary

6.32 The TIS aims to achieve a sustainable mode split for journeys to and from the site, improving on the existing mode split observed for journeys to work in the Sully ward, and facilitate a mode shift amongst existing residents to help create a more inclusive, pleasant and prosperous community.

7 SUMMARY AND CONCLUSION

Summary

7.1 Vectos has been commissioned by Taylor Wimpey to provide traffic and transportation advice in relation to an outline application for the proposed development of up to 190 residential dwellings on land located to the south of Cog Road, Sully. The application site is an extension to the recently consented 350 dwelling scheme occupying land to the immediate south of the consented scheme.
7.2 The site is part of that allocated in the emerging Vale of Glamorgan Local Development Plan for residential development of up to 500 houses (Housing Allocation MG2 (46)), of which 350 have received recent consent, resolution to grant.
7.3 The intention is to create a sustainable socially inclusive community with these overriding principles embodied within the indicative masterplan for the site.
7.4 The site has been designed to promote pedestrian and cycle movement and there will be significant investment in this regard.
7.5 Vehicle access to the site will be from Cog Road via the minor arm of a new priority junction and a similar junction arrangement on Swanbridge Road.
7.6 Whilst the traffic impacts for up to the 500 dwellings have been previously reported, this TA has considered increasing this by a further 40 units. The findings are that in the AM peak period a further 20 vehicles are added to the highway network with an extra vehicle every 6 mins on the more sensitive Cog Rd approach to South Rd.
7.7 Similarly, in the PM peak, the direct impact on Cog Road approach to South Road is 1 vehicle every 10 minutes.
7.8 The impact at more remote junctions is not considered to result in a detrimental effect on the operation of the local highway network during the peak periods.
7.9 In order to increase improve travel choice and awareness in this area the development proposes to make a contribution via a Section 106 agreement to the following initiatives:

- $£ 2 \mathrm{k}$ per household for sustainable travel improvements.

Conclusion

7.10 Therefore, the development provides necessary housing in a short timeframe. It is designed to maximise social inclusion and effect a step change in sustainable travel thinking. It has transport sustainability benefits for the existing local community, and no significant traffic impact.
7.11 Therefore, there is good reason to encourage this scheme, and no good reason to resist this on transport grounds.

Land South of Cog Road, Sully - Response to DC Comments (Highways)

June 2014

W120604/N03

Introduction

1. This note sets out the Vectos response to comments received from the Vale of Glamorgan (VoG) in relation to the Transport Assessment (TA) submitted as part of the planning application for a proposed residential development adjacent to Cog Road, Sully.
2. A meeting was held with VoG to discuss the comments made by the highway officer (Steve Arthur) in his email of $10^{\text {th }}$ March 2014.
3. Each of the six points raised in the email of $10^{\text {th }}$ March 2014 is dealt with in turn, and where appropriate, additional data is supplied in appendices.

Collision Data

4. The VoG comments requested that additional detail be provided with regards to the accident data in the vicinity of the site. Appendix A details each of the accidents identified in the data supplied by VoG. This illustrates that there is no clear factor or factors contributing to a large group of accidents. The frequency of the accidents is not unusual, and is not indicative of an inherent problem which would be exacerbated by the proposed development.
5. There were 13 recorded disparate accidents shown along South Road, with a variety of causation descriptions. These are shown in Table 1.

Table 1 - Recorded Accidents on South Road

PIA Reference	Location	Time of Day	Causation Factors	Vehicles Involved
070166953	South Road j/w Minehead	$08: 54$	failure to look properly - pulling out of junction	2
070170719	South Road j/w Highbridge Close	$16: 03$	failure to look properly - pulling out of junction	2
070172714	South Road 10m west of Weston Avenue	$08: 45$	1	
070172968	South Road	$11: 30$	failure to look properly - pulling out of junction	2
080181007	South Road	$11: 30$	lost control	2
080182609	South Road	$18: 31$	pedestrian into path of vehicle	1

0214371	South Road j/w Beach Road	$00: 01$	failure to look properly - pulling out of junction	2
080183450	South Road	$08: 00$	failure to look properly - pulling out of junction	2
080184102	South Road j/w Cog Road	$22: 10$	2	
090189606	South Road j/w Clevedon Avenue	$15: 35$	failure to look phunt overtaking	2
090193261	South Road	$08: 00$	direct sunlight	1
110213823	South Road j/w Minehead	$12: 00$	failure to look properly - roadworks	2
100202435	South Road j/w Sully Moors Road	$18: 05$	rear end shunt	

6. From the above it can be seen that a 50% of the accidents were related to driver error on joining South Road from side roads or whilst travelling along South Rd. There is nothing to suggest that speed was the primary factor in any of the accidents recorded on South Road. The two rear end shunts may be related to vehicle speed but this is not mentioned in the accident data.
7. As the main pedestrian route through Sully, there are improvements which could be made, by way of reducing vehicle speeds. VoG have previously suggested that there is a desire to improve the existing crossing facilities across South Road by raising them. This is an initiative which would be supported, and it is suggested that the sustainable transport contribution which will be forthcoming from the development could be used to bring forward this improvement to the pedestrian environment.

South Road

8. VoG have previously supplied ATC data for an ATC on South Road, between Burnham Road and Minehead Avenue. This survey is contained at Appendix B and illustrates that the observed 85% ile speed on South Road is 30 mph . The mean speed is 25 mph which is lower than the designated speed limit of 30 mph .
9. A graph showing the daily profile of the two-way flow on South Road is shown in Chart 1.

Chart 1 - Two-way Flows on South Road

10. South Road is a straight and flat road which would make it susceptible to high speeds. However, the speeds recorded from the ATC survey on South Road show that the $85^{\text {th }}$ percentile speeds accord with the speed limit and the average speeds are lower than the 30 mph limit.
11. There are many traffic calming features present on South Road i.e. pedestrian crossings, junctions and bus stops within the carriageway. Analysis of the accident data shows that four accidents occurred near the pedestrian crossings on South Road. However, detailed analysis of the accident data at this location shows that two of the accidents were caused by the driver's failure to look properly when pulling out of the junction, one was caused by an obstructed view due to roadworks, and one accident was caused by a pedestrian running into the path of a vehicle. The accidents do not suggest a safety issue caused by high speeds on South Road.
12. The $85^{\text {th }}$ percentile speed recorded on South Road is consistent with the posted speed limit. Notwithstanding this, any measure to reduce speed, as set out above, is likely to be welcomed in terms of improving the perception of vehicle speeds.

Spine Road Design

13. The comments from VoG raised concern over the design of the 'spine road' through the site and its potential use as a rat run.
14. While the application is outline, the design ethos of the site is clear, in that it encourages connectivity through and across the site, without providing a 'highway' feel. The ethos of Manual for Streets will be adopted for the design of the internal routes, in order to promote an inclusive scheme. The spine road will however be designed to accommodate use by school buses, which currently travel between Cog Road and Swanbridge Road.
15. The spine road will not be designed as a straight road and will instead meander through the development in order to discourage high speeds. The spine road will be subject to a 20 mph speed limit, encouraging those who are more proficient to cycle on the road, and creating a more pleasant environment for pedestrians.
16. The development will follow a hierarchy of movement which provides greatest priority to pedestrians and cyclists, followed by public transport, with least priority to the private car.
17. Following further discussions with VoG officers, the design of the site is to be amended to better show this.
18. As set out in the Transport Assessment, the traffic survey showed that the number of vehicle movements currently between Cog Road and Swanbridge Road is low, and the design of the scheme will not cause any reason for this to significantly alter this demand.

Trip Rates

19. As detailed in the TA, average trip rates from the TRICS database were used in assessing the potential impact of the development. These trip rates were validated against local surveys, which showed lower trip rates than those derived from TRICS. Good practice is to use local surveys as a starting point, and the approach adopted in the TA, using higher than observed trip rates, can be seen to be robust.
20. The reason for using average, rather than 85\%ile trip rates was as a result of filtering applied during the interrogation of TRICS. This resulted in 12 comparable sites. The TRICS Good Practice guidance states that 20 sites should be selected if trying to achieve an 85% ile trip rate.
21. Notwithstanding this, VoG have requested that a sensitivity test is undertaken using 85% ile trip rates. This is considered unnecessary, as the assessment is already overly robust, as it could have justifiably been undertaken using the surveyed trip rates with the TRICS average rates used for a sensitivity test.

Wider Junctions

22. As detailed in the TA, the impact of the proposed development will be slight (less than 5\%, and in most instances 3% or less). The impact of the proposed development by arm at each of the wider junctions is shown in Tables 2 to 5.

Table 2 - Port Road / Barry Docks Link Road

Link	AM		PM	
	Dev Flows (Vehs)	Additional vehs (per min)	Dev Flows (Vehs)	Additional vehs (per min)
Port Road (N)	51	0.85	58	0.96
Barry Docks Link Road	51	0.85	58	0.96
Port Road (W)	0	0	0	0

Table 3 - Merrie Harrier Junction

Link	AM		PM	
	Dev Flows (Vehs)	Additional vehs (per min)	Dev Flows (Vehs)	Additional vehs (per min)
Penland Road	21	0.36	25	0.41
Barry Road	49	0.82	62	1.03
Andrew Road	0	0	0	0
Cardiff Road	71	1.18	86	1.44

Table 4 - Sully Moors Road / Cardiff Road

Link	AM		PM	
	Dev Flows (Vehs)	Additional vehs (per min)	Dev Flows (Vehs)	Additional vehs (per min)
Cardiff Road (N)	66	1.1	74	1.24
Sully Moors Road	127	2.11	143	2.38
Cardiff Road (S)	10	0.16	11	0.18
Barry Docks Link Road	51	0.85	58	0.96

Table 5 - Cardiff Road / Redlands Road

Link	AM		PM	
	Dev Flows (Vehs)	Additional vehs (per min)	Dev Flows (Vehs)	Additional vehs (per min)
Cardiff Road (N)	85	1.37	96	1.6
Redlands Road	16	0.27	22	0.36
Cardiff Road (S)	66	1.1	74	1.24

23. Based on the results in Tables $\mathbf{2}$ to $\mathbf{5}$ and for the purposes of assessment, the predicted number of additional vehicles per minute is estimated as 2.38 vehicles on the Sully Moors Road arm in the PM Peak. The junctions experience minor increases in additional vehicles over the AM and PM peak periods. However, it is acknowledged by the VoG Council that these junctions already have capacity issues during the peak periods.
24. It is agreed that there is no reasonable mitigation which could be brought forward by this development which would provide betterment at these junctions, and no VoG scheme which can be contributed to. It should also be noted that in the future year scenario it is quite possible that traffic behaviour/flows and peak periods will change.
25. In any event, the development will be providing a significant quantum of money towards sustainable travel. This should be seen as a more suitable long-term form of mitigation than attempting to provide minor improvements to highway capacity.

Cog Road Junction

26. The modelling results in the TA show that the Cog Road junction with South Road may be expected to exceed capacity on the future year of 2026 in the AM peak period, ostensibly with vehicles queuing to exit Cog Road. The queue length at this junction is shown in Table 6 for each modelling scenario and for each 15 minute time period. The queue lengths at each arm have been derived from the PICADY modelling results.

Table 6 - Queuing at Cog Road / South Road Junction

Number of Vehicles in Queue (AM)												
	2013			$2013 \text { + }$ Development			$2018+$ Development			$2026+$ Development		
	B-A	B-C	C-AB									
$\begin{aligned} & \hline 08: 00- \\ & 08: 15 \end{aligned}$	0.6	0.0	0.0	2.1	0.1	0.0	2.6	0.1	0.0	0.2	5.0	0.1
$\begin{gathered} \hline 08: 15- \\ 08: 30 \end{gathered}$	0.5	0.1	0.1	2.1	0.1	0.1	2.9	0.1	0.1	0.5	5.4	0.1
$\begin{gathered} \text { 08:30- } \\ 08: 45 \end{gathered}$	0.4	0.1	0.1	2.5	0.3	0.1	3.5	0.4	0.1	4.7	8.9	0.2
$\begin{aligned} & \text { 08:45- } \\ & 09: 00 \end{aligned}$	0.3	0.2	0.1	1.2	0.3	0.1	1.5	0.4	0.1	0.8	2.9	0.1
Number of Vehicles in Queue (PM)												
	2013			$2013+$ Development			$2018+$ Development			$2026+$ Development		
	B-A	B-C	C-AB									
$\begin{gathered} \hline 17: 00- \\ 17: 15 \end{gathered}$	0.5	0.1	0.1	1.2	0.1	0.1	1.4	0.1	0.1	2.0	0.2	0.1
$\begin{gathered} \hline \text { 17:15- } \\ \text { 17:30 } \end{gathered}$	0.3	0.1	0.1	0.5	0.1	0.1	0.6	0.1	0.1	0.8	0.2	0.2
$\begin{gathered} \text { 17:30- } \\ \text { 17:45 } \end{gathered}$	0.3	0.1	0.1	0.7	0.1	0.1	0.8	0.2	0.1	1.1	0.2	0.1
$\begin{gathered} \hline 17: 45- \\ 18: 00 \end{gathered}$	0.2	0.1	0.0	0.3	0.1	0.0	0.4	0.1	0.0	0.5	0.1	0.0

($\mathrm{A}=$ South Road (W), B = Cog Road, C = South Road (E))
27. The results in Table 6 show that there is a 9 vehicle queue on Cog Road in the $2026+$ Development scenario in the AM Peak. However, it is shown that this degree of queuing is present during one 15 minute time segment (08:30-08:45) and that by the end of the next 15 minute segment, the queue decreases to 3 vehicles. In the PM peak there is no excessive queuing in any of the modelling scenarios.
28. For ease of reference, a visual interpretation of the queue length results in the AM peak period is shown in Figure 1.

Figure 1 - Queue Lengths at Cog Road / South Road Junction - AM Peak

29. From the evidence in Table 6 and Figure 1, the major change in queue length occurs between 2018 and 2026 which can be attributed to the traffic growth applied to the 2013
base flows for these years. It can be argued that this level of growth is unlikely on Cog Road and also that it is not for the proposed development to mitigate against growth.
30. As with any traffic modelling dealing with future year assessments, a degree of caution needs to be applied when considering the results. Future year traffic growth predictions cannot always be relied on to accurately forecast changes in travel behaviour, particularly over such a long time period. Whilst some queuing is shown in part of the AM peak period, it is not a continuous queue as it ebs and flows throughout the peak period. By the end of the AM peak period, the level of queuing on Cog Road is 3 vehicles.
31. Nevertheless, as with the wider area junctions, it would "not be appropriate to attempt to mitigate this impact with junction modifications." The nature of Cog Road and the Cog Road/South Road junction (i.e. the junction has good visibility in both directions, direct driveway access onto Cog Road, access to church frontage/parking, bus stops and cycleway/route crossing) means that there are limited opportunities to change the layout of the junction. Furthermore, policy supports the use of travel planning and smarter choices to encourage changes in travel behaviour. This is consistent with the provision of the funding for sustainable travel which will be provided by the development.
32. The site is located in close proximity to local schools and bus services to secondary education are provided and therefore there is opportunity to reduce the proportion of vehicle trips in the AM peak period. Data from the National Travel Survey (NTS) suggests that 28% of trips in the AM peak are educational trips; therefore the traffic flows from the development are an overestimate.

Car Passenger? Front seat passenget PSV Passenger? Not a passenger

Seat Belt Unknown
Ped Movement Not applicable
Ped Location Not applicable
Ped Direction to Not applicable
School Pupil Other
Roadworker injured
Other Details

SEVERITY SLIGHT	$\begin{array}{lr}\text { District } & \text { The Vale } \\ \text { Ref.No } & 080182609\end{array}$	of Glamorgan				Grid Reference $315820 / 168000$ Police Officer Attend: Yes
Date Time Weather Road Surface Street Lightin	08/09/2008 Day 18:31 Fine without high Dry Daylight	Monday Road Descri of Acc	Road U Location South Rd., Sully Description Pedestrians Step into Path of V1 and Are Injured of Accident			
SITE DETAILS $\quad 30 \mathrm{MPH}$ Speed Limit Single carriageway Carriageway Junction Detail Not at or within 20 metres of junction Junction Control 2nd Road Number Pedestrian Facilities None within 50 metres No physical crossing facility within 50 r			CARRIAGEWAY HAZARDS None	DITIONS ZARDS		
VEHICLES INVOLVED 1					CASUALTIES INVOLVED	D 2

Other Details

Veh. direction from East to West Towing? No tow or articulation

Skidded No skidding, jack-knifing or overturning

Veh location at impact (restricted lane) On main carriageway not in restricted lane
Junct. location of veh. at lst impact Approaching junction or waiting
Veh left carriageway? Did not leave carriageway
Hit object in c'way? None
Hit object off c'way? None
First point of impact Back
Veh registration no.
Drivers age 67 yrs Sex Female
Other veh.hit (ref.no)
Breath test Not requested Driving Lic
Left Hand Drive Unknown
Foreign veh. Not foreign registered vehicle
Journey purpose Other

Hit object in c'way? None
Hit object off c'way? Non
First point of impact Front
Veh registration no

Left Hand Drive
Other veh.hit (ref.no) 2 Hit and run Not hit and run Breath test Not provided (medical rı Driving Lic
Foreign veh. Not foreign registered vehicle

		SULLY ATCs				Posted Speed Limit (PSL)	Total Vehicles	5 Day Ave.	7 Day Ave.	Posted Speed Limit (PSL)		$\begin{gathered} 110 \%(P S L)+2 \\ (S L 1) \end{gathered}$		$\begin{aligned} & \text { DfT PSL+15 } \\ & \text { (SL2) } \end{aligned}$		Mean Speed	85% ile Speed
Site	Location	JUNE 2013															
		Lat / Long	Direction	Start Date	End Date					>PSL	>PSL\%	>SL1	>SL1\%	>SL2	>SL2\%		
1	B4267 Solly Moors Road -- Att to lamp post	$\begin{aligned} & 51.40769^{\circ} \mathrm{N} \\ & 3.22600^{\circ} \mathrm{W} \end{aligned}$	Northbound	$\begin{aligned} & 13 \text { June } \\ & 2013 \end{aligned}$	$\begin{gathered} 19 \text { June } \\ 2013 \end{gathered}$	30	47287	7332	6755	33515	70.9	7306	15.5	144	0.3	31.8	34.9
			Southbound	$\begin{gathered} 13 \text { June } \\ 2013 \end{gathered}$	$\begin{gathered} 19 \text { June } \\ 2013 \end{gathered}$		45466	7018	6495	42846	94.2	30119	66.2	2301	5.1	36.9	41.4
			Two-Way	$\begin{aligned} & 13 \text { June } \\ & 2013 \end{aligned}$	$\begin{gathered} 19 \text { June } \\ 2013 \end{gathered}$		92753	14350	13250	76361	82	37425	40	2445	3	34	39

CO292 SULLY ATCs

13 J une 2013	to	
TIME	TOTAL	MOTOR-
PERIOD	VEHICLES	CYCLES

Site
Direction Northbound 13 June 2013

0000	25	0	24	1	0	0	0	0	0	0	0	0	0	0
01:00	10	1	8	0	0	0	0	0	0	0	1	0	0	0
02:00	11	0	9	2	0	0	0	0	0	0	0	0	0	0
03:00	6	0	6	0	0	0	0	0	0	0	0	0	0	0
04:00	7	0	6	1	0	0	0	0	0	0	0	0	0	0
05:00	39	1	34	2	0	0	0	0	1	0	1	0	0	0
06:00	130	4	109	12	0	1	0	0	2	0	0	2	0	0
07:00	412	3	362	29	0	8	3	0	3	0	1	3	0	0
08:00	690	3	628	35	0	10	1	0	4	0	4	3	0	2
09:00	554	3	494	36	1	7	2	0	4	0	4	2	0	1
10:00	430	0	379	33	0	7	2	0	2	0	2	4	0	1
11:00	439	4	398	21	1	5	3	0	3	0	0	4	0	0
12:00	481	4	423	39	1	6	1	0	2	1	1	3	0	0
13:00	471	3	426	24	0	4	3	0	3	0	4	3	0	1
14:00	427	3	391	25	0	4	1	0	0	0	1	2	0	0
15:00	579	5	513	45	0	7	0	0	4	0	3	2	0	0
16:00	605	5	559	27	0	5	0	0	4	0	0	4	0	1
17:00	591	4	555	17	0	2	4	0	6	0	1	2	0	0
18:00	399	7	373	12	0	3	1	0	1	0	1	1	0	0
19:00	315	1	304	3	0	0	0	0	5	0	0	2	0	0
20:00	260	2	254	3	0	0	0	0	1	0	0	0	0	0
21:00	162	1	156	4	0	0	0	0	1	0	0	0	0	0
22:00	124	3	119	1	0	1	0	0	0	0	0	0	0	0
23:00	50	0	48	2	0	0	0	0	0	0	0	0	0	0
07-19	6078	44	5501	343	3	68	21	0	36	1	22	33	0	6
06-22	6945	52	6324	365	3	69	21	0	45	1	22	37	0	6
06-00	7119	55	6491	368	3	70	21	0	45	1	22	37	0	6
00-00	7217	57	6578	374	3	70	21	0	46	1	24	37	0	6

Sky High-Count On Us 8

C0292	SULLY ATCS					Site		Location	B4267 Solly	Moors Road	- Att to la	p post (51.	$40769^{\circ} \mathrm{N} 3$.	$22600^{\circ} \mathrm{W}$)
13 J une 2013		to	19 J une 20			Direction	Northboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	$\begin{aligned} & \text { CARS OR } \\ & \text { CAR- } \\ & \text { BASED } \\ & \text { LGV } \\ & \hline \end{aligned}$	$\begin{gathered} \text { LIGHT } \\ \text { GOODS } \\ \text { VEHICLES } \end{gathered}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{aligned} & \text { FOUR OR } \\ & \text { LESS } \\ & \text { AXLE } \\ & \text { ARTIC } \\ & \hline \end{aligned}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAILER ARTIC	SIX AXLE MULTITRAI LER ARTIC	SEVEN OR MORE AXLE ARTIC
14 June 2013														
0000	31	1	29	1	0	0	0	0	0	0	0	0	0	0
01:00	12	0	11	1	0	0	0	0	0	0	0	0	0	0
02:00	5	0	3	1	0	0	0	0	0	0	1	0	0	0
03:00	10	0	10	0	0	0	0	0	0	0	0	0	0	0
04:00	11	0	9	2	0	0	0	0	0	0	0	0	0	0
05:00	29	0	27	1	0	0	0	0	0	0	1	0	0	0
06:00	126	1	112	8	0	2	0	0	1	0	0	2	0	0
07:00	390	2	351	20	0	8	2	0	2	0	2	3	0	0
08:00	640	3	586	31	0	7	8	0	2	0	1	1	0	1
09:00	539	1	478	40	1	8	2	0	3	0	3	2	0	1
10:00	478	4	420	42	0	4	1	0	0	1	3	2	0	1
11:00	445	2	398	33	0	3	0	0	4	0	0	4	0	1
12:00	500	5	447	36	0	3	4	0	4	0	0	1	0	0
13:00	456	3	417	25	1	4	3	0	2	0	0	1	0	0
14:00	494	5	449	27	0	6	2	1	2	0	0	2	0	0
15:00	678	2	626	35	0	4	3	0	2	0	1	5	0	0
16:00	636	7	595	22	0	3	1	0	4	0	0	3	1	0
17:00	556	6	526	18	0	1	2	0	2	0	1	0	0	0
18:00	437	1	421	8	0	2	1	0	2	0	1	1	0	0
19:00	263	0	255	7	0	0	0	0	1	0	0	0	0	0
20:00	220	3	214	2	0	0	1	0	0	0	0	0	0	0
21:00	133	0	130	3	0	0	0	0	0	0	0	0	0	0
22:00	103	0	99	2	0	1	0	0	1	0	0	0	0	0
23:00	72	4	67	0	0	1	0	0	0	0	0	0	0	0
07-19	6249	41	5714	337	2	53	29	1	29	1	12	25	1	4
06-22	6991	45	6425	357	2	55	30	1	31	1	12	27	1	4
06-00	7166	49	6591	359	2	57	30	1	32	1	12	27	1	4
00-00	7264	50	6680	365	2	57	30	1	32	1	14	27	1	4

C0292 Su	SULLY ATCs					Ste	1	Location	B4267 Solly	Moors Road	- Att to la	mp post (51.	$40769^{\circ} \mathrm{N} 3$.	$\left.22600^{\circ} \mathrm{W}\right)$
13 J une 2013	3	to	19 J une 20			Direction	Northboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	$\begin{aligned} & \text { LIGHT } \\ & \text { GOODS } \\ & \text { VEHICLES } \end{aligned}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAI LER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
15 June 2013														
0000	51	0	47	4	0	0	0	0	0	0	0	0	0	0
01:00	26	0	23	2	0	0	0	0	0	0	1	0	0	0
02:00	14	0	13	1	0	0	0	0	0	0	0	0	0	0
03:00	16	0	15	1	0	0	0	0	0	0	0	0	0	0
04:00	14	0	14	0	0	0	0	0	0	0	0	0	0	0
05:00	26	0	23	2	0	0	0	0	1	0	0	0	0	0
06:00	61	0	54	4	0	2	0	0	1	0	0	0	0	0
07:00	108	2	94	9	0	2	0	0	0	0	0	1	0	0
08:00	208	5	189	8	0	3	0	0	1	0	1	1	0	0
09:00	329	1	309	13	0	4	0	0	1	0	0	1	0	0
10:00	404	5	386	10	0	1	2	0	0	0	0	0	0	0
11:00	469	4	440	13	0	2	4	0	5	0	0	0	0	1
12:00	453	3	427	18	0	1	2	0	2	0	0	0	0	0
13:00	488	5	468	13	0	1	0	0	1	0	0	0	0	0
14:00	476	4	455	10	0	1	3	0	2	0	0	0	0	1
15:00	435	5	418	7	0	1	1	0	2	0	0	1	0	0
16:00	394	5	374	11	0	1	1	0	2	0	0	0	0	0
17:00	389	3	373	10	0	1	1	0	1	0	0	0	0	0
18:00	342	3	328	5	0	2	0	0	4	0	0	0	0	0
19:00	256	3	247	3	0	0	1	0	2	0	0	0	0	0
20:00	190	3	181	3	1	1	0	0	1	0	0	0	0	0
21:00	137	1	133	2	0	0	0	0	1	0	0	0	0	0
22:00	122	2	117	2	0	0	0	0	1	0	0	0	0	0
23:00	90	2	85	3	0	0	0	0	0	0	0	0	0	0
07-19	4495	45	4261	127	0	20	14	0	21	0	1	4	0	2
06-22	5139	52	4876	139	1	23	15	0	26	0	1	4	0	2
06-00	5351	56	5078	144	1	23	15	0	27	0	1	4	0	2
00-00	5498	56	5213	154	1	23	15	0	28	0	2	4	0	2

CO292 SULLY ATCs

13 J une 2013		to	19 J une 2013			Direction	Northbound							
		MOTORCYCLES	CARS OR CARBASED LGV	$\begin{gathered} \text { LIGHT } \\ \text { GOODS } \\ \text { VEHICLES } \end{gathered}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAILER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
16 June 2013														
0000	61	1	57	2	0	0	0	0	0	0	1	0	0	0
01:00	21	0	18	2	0	0	1	0	0	0	0	0	0	0
02:00	21	0	21	0	0	0	0	0	0	0	0	0	0	0
03:00	9	0	9	0	0	0	0	0	0	0	0	0	0	0
04:00	12	0	11	0	0	0	0	0	0	0	1	0	0	0
05:00	19	1	14	3	0	0	0	0	1	0	0	0	0	0
06:00	43	1	41	1	0	0	0	0	0	0	0	0	0	0
07:00	67	1	66	0	0	0	0	0	0	0	0	0	0	0
08:00	171	4	161	5	0	1	0	0	0	0	0	0	0	0
09:00	305	10	288	3	0	0	0	0	3	0	0	1	0	0
10:00	493	3	471	12	0	1	2	0	4	0	0	0	0	0
11:00	463	1	451	4	0	1	2	0	2	0	2	0	0	0
12:00	478	2	465	6	0	1	3	0	1	0	0	0	0	0
13:00	400	2	388	6	0	1	0	0	2	0	0	1	0	0
14:00	474	2	461	9	0	1	0	0	1	0	0	0	0	0
15:00	441	3	427	8	0	0	1	0	2	0	0	0	0	0
16:00	381	1	367	9	0	1	1	0	1	0	1	0	0	0
17:00	350	12	333	3	0	1	0	0	1	0	0	0	0	0
18:00	300	4	292	3	0	0	0	0	1	0	0	0	0	0
19:00	213	4	204	3	0	0	0	0	2	0	0	0	0	0
20:00	191	4	179	3	0	1	1	0	2	0	0	1	0	0
21:00	116	1	114	0	0	1	0	0	0	0	0	0	0	0
22:00	64	0	63	1	0	0	0	0	0	0	0	0	0	0
23:00	36	1	34	1	0	0	0	0	0	0	0	0	0	0
07-19	4323	45	4170	68	0	8	9	0	18	0	3	2	0	0
06-22	4886	55	4708	75	0	10	10	0	22	0	3	3	0	0
06-00	4986	56	4805	77	0	10	10	0	22	0	3	3	0	0
00-00	5129	58	4935	84	0	10	11	0	23	0	5	3	0	0

Sky High-Count On Us
C0292 SULLY ATCs

13 J une 2013			19 J une 2013			Direction	Northbound							
$\begin{aligned} & \text { TI ME } \\ & \text { PERI OD } \end{aligned}$	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	$\begin{aligned} & \text { LIGHT } \\ & \text { GOODS } \\ & \text { VEHICLES } \end{aligned}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI- TRAI LER ARTIC	SIX AXLE MULTI- TRAI LER ARTIC	SEVEN OR MORE AXLE ARTIC
17 June 2013														
0000	19	1	18	0	0	0	0	0	0	0	0	0	0	0
01:00	6	0	6	0	0	0	0	0	0	0	0	0	0	0
02:00	5	0	4	1	0	0	0	0	0	0	0	0	0	0
03:00	8	0	6	2	0	0	0	0	0	0	0	0	0	0
04:00	12	1	9	2	0	0	0	0	0	0	0	0	0	0
05:00	42	1	38	3	0	0	0	0	0	0	0	0	0	0
06:00	114	4	95	8	0	1	1	1	2	0	0	2	0	0
07:00	403	4	351	26	0	8	4	0	5	1	1	1	0	2
08:00	655	5	608	24	1	6	7	0	2	0	2	0	0	0
09:00	511	1	468	29	0	8	2	0	0	0	3	0	0	0
10:00	418	3	359	38	1	7	2	0	3	0	2	3	0	0
11:00	406	8	361	30	0	1	1	0	2	0	2	0	0	1
12:00	483	3	444	24	0	4	2	0	3	0	0	3	0	0
13:00	423	5	379	26	0	4	1	0	4	0	3	1	0	0
14:00	447	8	394	31	0	4	2	0	3	0	2	1	0	2
15:00	627	3	564	35	0	8	6	0	4	0	1	5	0	1
16:00	667	4	615	38	0	4	3	0	2	0	0	1	0	0
17:00	605	4	568	21	0	4	3	0	3	0	2	0	0	0
18:00	433	11	410	9	0	2	0	0	1	0	0	0	0	0
19:00	298	9	272	12	0	0	1	0	2	0	1	1	0	0
20:00	245	4	237	3	0	0	0	0	1	0	0	0	0	0
21:00	145	1	138	6	0	0	0	0	0	0	0	0	0	0
22:00	110	1	106	2	0	1	0	0	0	0	0	0	0	0
23:00	48	1	45	2	0	0	0	0	0	0	0	0	0	0
07-19	6078	59	5521	331	2	60	33	0	32	1	18	15	0	6
06-22	6880	77	6263	360	2	61	35	1	37	1	19	18	0	6
06-00	7038	79	6414	364	2	62	35	1	37	1	19	18	0	6
00-00	7130	82	6495	372	2	62	35	1	37	1	19	18	0	6

Sky High-Count On Us
CO292 SULLY ATCs

13 J une 2013	to	
TIME	TOTAL	MOTOR-
PERIOD	VEHICLES	CYCLES

Site
Direction Northbound 18 June 2013

0000	20	0	18	2	0	0	0	0	0	0	0	0	0	0
01:00	1	0	1	0	0	0	0	0	0	0	0	0	0	0
02:00	7	0	6	1	0	0	0	0	0	0	0	0	0	0
03:00	9	0	8	1	0	0	0	0	0	0	0	0	0	0
04:00	9	1	5	3	0	0	0	0	0	0	0	0	0	0
05:00	33	2	28	1	0	0	0	0	0	0	0	2	0	0
06:00	123	4	106	5	0	2	1	0	1	0	3	1	0	0
07:00	408	5	355	32	0	10	2	0	1	0	1	2	0	0
08:00	673	5	622	24	0	10	4	0	1	0	3	3	0	1
09:00	521	6	478	20	1	4	3	0	2	0	3	4	0	0
10:00	441	2	384	37	0	5	3	0	4	0	1	3	0	2
11:00	446	3	393	36	0	6	2	0	5	0	1	0	0	0
12:00	486	3	438	35	0	3	0	0	2	0	2	3	0	0
13:00	474	7	434	16	0	7	2	0	2	1	2	3	0	0
14:00	500	4	444	32	0	6	7	0	4	1	1	1	0	0
15:00	621	4	578	27	0	5	2	0	3	0	0	1	0	1
16:00	645	9	595	32	1	4	0	0	2	0	1	1	0	0
17:00	608	4	571	24	0	3	1	0	5	0	0	0	0	0
18:00	492	12	466	7	0	4	0	0	2	0	0	1	0	0
19:00	335	7	317	5	0	0	1	0	3	1	0	1	0	0
20:00	260	4	245	8	0	1	0	0	2	0	0	0	0	0
21:00	189	0	187	2	0	0	0	0	0	0	0	0	0	0
22:00	97	1	94	0	0	2	0	0	0	0	0	0	0	0
23:00	45	0	41	3	0	1	0	0	0	0	0	0	0	0
07-19	6315	64	5758	322	2	67	26	0	33	2	15	22	0	4
06-22	7222	79	6613	342	2	70	28	0	39	3	18	24	0	4
06-00	7364	80	6748	345	2	73	28	0	39	3	18	24	0	4
00-00	7443	83	6814	353	2	73	28	0	39	3	18	26	0	4

Sky High-Count On Us 8
CO292 SULLY ATCs

13 J une 2013	to	
TIME	TOTAL	MOTOR-
PERIOD	VEHICLES	CYCLES

Site
Direction Northbound 19 June 2013

0000	13	0	11	2	0	0	0	0	0	0	0	0	0	0
01:00	8	0	6	2	0	0	0	0	0	0	0	0	0	0
02:00	3	0	1	2	0	0	0	0	0	0	0	0	0	0
03:00	7	0	6	1	0	0	0	0	0	0	0	0	0	0
04:00	14	1	10	1	0	1	0	0	0	0	1	0	0	0
05:00	40	1	34	4	0	0	0	0	0	0	1	0	0	0
06:00	106	4	86	7	0	3	0	0	2	0	2	2	0	0
07:00	418	6	361	31	0	7	3	0	5	0	3	1	0	1
08:00	674	10	604	32	1	11	7	0	5	0	2	0	0	2
09:00	522	4	467	35	0	7	5	0	2	0	1	1	0	0
10:00	456	7	399	31	2	7	4	0	1	0	2	3	0	0
11:00	437	4	399	20	1	4	1	0	4	0	2	1	0	1
12:00	515	7	475	25	0	4	1	0	1	0	1	1	0	0
13:00	490	7	443	26	1	5	3	0	1	1	1	1	0	1
14:00	522	14	463	26	1	3	1	0	6	0	5	3	0	0
15:00	652	2	604	31	0	5	3	0	5	0	0	2	0	0
16:00	582	7	532	31	0	2	2	0	5	0	1	2	0	0
17:00	624	13	579	18	0	3	3	0	5	0	1	2	0	0
18:00	484	16	445	15	0	2	0	0	4	0	1	0	0	1
19:00	339	9	322	6	0	0	1	0	1	0	0	0	0	0
20:00	271	11	256	3	0	0	0	0	1	0	0	0	0	0
21:00	240	1	232	5	0	0	0	0	2	0	0	0	0	0
22:00	135	3	128	2	0	1	0	0	1	0	0	0	0	0
23:00	54	2	51	1	0	0	0	0	0	0	0	0	0	0
07-19	6376	97	5771	321	6	60	33	0	44	1	20	17	0	6
06-22	7332	122	6667	342	6	63	34	0	50	1	22	19	0	6
06-00	7521	127	6846	345	6	64	34	0	51	1	22	19	0	6
00-00	7606	129	6914	357	6	65	34	0	51	1	24	19	0	6

Sky High-Count On Us 8

C0292 Su	SULLY ATCs					Ste	1	Location	B4267 Solly	Moors Road	- Att to la	p post (51.	$40769^{\circ} \mathrm{N} 3$.	$\left.22600^{\circ} \mathrm{W}\right)$
13 J une 2013	3	to	19 J une 20			Direction	Northboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	$\begin{aligned} & \text { LIGHT } \\ & \text { GOODS } \\ & \text { VEHICLES } \end{aligned}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAILER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
Average Day														
0000	31	0	29	2	0	0	0	0	0	0	0	0	0	0
01:00	12	0	10	1	0	0	0	0	0	0	0	0	0	0
02:00	9	0	8	1	0	0	0	0	0	0	0	0	0	0
03:00	9	0	9	1	0	0	0	0	0	0	0	0	0	0
04:00	11	0	9	1	0	0	0	0	0	0	0	0	0	0
05:00	33	1	28	2	0	0	0	0	0	0	0	0	0	0
06:00	100	3	86	6	0	2	0	0	1	0	1	1	0	0
07:00	315	3	277	21	0	6	2	0	2	0	1	2	0	0
08:00	530	5	485	23	0	7	4	0	2	0	2	1	0	1
09:00	469	4	426	25	0	5	2	0	2	0	2	2	0	0
10:00	446	3	400	29	0	5	2	0	2	0	1	2	0	1
11:00	444	4	406	22	0	3	2	0	4	0	1	1	0	1
12:00	485	4	446	26	0	3	2	0	2	0	1	2	0	0
13:00	457	5	422	19	0	4	2	0	2	0	1	1	0	0
14:00	477	6	437	23	0	4	2	0	3	0	1	1	0	0
15:00	576	3	533	27	0	4	2	0	3	0	1	2	0	0
16:00	559	5	520	24	0	3	1	0	3	0	0	2	0	0
17:00	532	7	501	16	0	2	2	0	3	0	1	1	0	0
18:00	412	8	391	8	0	2	0	0	2	0	0	0	0	0
19:00	288	5	274	6	0	0	1	0	2	0	0	1	0	0
20:00	234	4	224	4	0	0	0	0	1	0	0	0	0	0
21:00	160	1	156	3	0	0	0	0	1	0	0	0	0	0
22:00	108	1	104	1	0	1	0	0	0	0	0	0	0	0
23:00	56	1	53	2	0	0	0	0	0	0	0	0	0	0
07-19	5702	56	5242	264	2	48	24	0	30	1	13	17	0	4
06-22	6485	69	5982	283	2	50	25	0	36	1	14	19	0	4
06-00	6649	72	6139	286	2	51	25	0	36	1	14	19	0	4
00-00	6755	74	6233	294	2	51	25	0	37	1	15	19	0	4

C0292 SULLY ATCs

13 J une 2013			19 J une 2013			Direction	Southbound							
$\begin{aligned} & \text { TI ME } \\ & \text { PERI OD } \end{aligned}$	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	$\begin{aligned} & \text { LIGHT } \\ & \text { GOODS } \\ & \text { VEHICLES } \end{aligned}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI- TRAI LER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
13 June 2013														
0000	27	0	23	4	0	0	0	0	0	0	0	0	0	0
01:00	11	0	9	1	0	1	0	0	0	0	0	0	0	0
02:00	6	0	5	1	0	0	0	0	0	0	0	0	0	0
03:00	8	0	7	1	0	0	0	0	0	0	0	0	0	0
04:00	15	0	13	1	0	0	0	0	0	0	0	1	0	0
05:00	30	1	23	3	0	1	0	0	1	0	0	1	0	0
06:00	100	3	66	24	2	1	1	0	2	0	0	1	0	0
07:00	415	3	331	65	4	2	3	1	0	0	2	3	0	1
08:00	677	1	577	82	3	6	2	0	2	0	1	3	0	0
09:00	501	3	406	64	8	11	2	1	1	0	2	3	0	0
10:00	415	1	347	49	2	8	2	0	3	0	0	2	0	1
11:00	399	0	337	51	2	5	0	0	1	0	2	1	0	0
12:00	420	0	356	49	4	4	1	0	1	0	1	2	0	2
13:00	452	3	385	53	2	5	1	0	1	0	2	0	0	0
14:00	471	1	388	60	5	5	1	0	3	0	3	5	0	0
15:00	548	2	475	57	3	4	2	0	0	0	2	2	0	1
16:00	578	4	500	59	3	6	2	0	0	0	2	1	0	1
17:00	545	2	504	30	1	3	0	0	1	0	2	1	0	1
18:00	489	5	436	41	3	0	0	1	0	0	1	2	0	0
19:00	332	4	305	21	0	1	0	0	0	0	0	1	0	0
20:00	201	3	185	12	1	0	0	0	0	0	0	0	0	0
21:00	145	1	135	8	0	1	0	0	0	0	0	0	0	0
22:00	122	1	117	4	0	0	0	0	0	0	0	0	0	0
23:00	70	0	67	3	0	0	0	0	0	0	0	0	0	0
07-19	5910	25	5042	660	40	59	16	3	13	0	20	25	0	7
06-22	6688	36	5733	725	43	62	17	3	15	0	20	27	0	7
06-00	6880	37	5917	732	43	62	17	3	15	0	20	27	0	7
00-00	6977	38	5997	743	43	64	17	3	16	0	20	29	0	7

13 J une 2013	3	to	J une			Direction	Southboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	$\begin{gathered} \text { CARS OR } \\ \text { CAR- } \\ \text { BASED } \\ \text { LGV } \\ \hline \end{gathered}$	LIGHT GOODS VEHI CLES	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAI LER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
14 June 2013														
0000	30	0	27	1	0	2	0	0	0	0	0	0	0	0
01:00	12	0	11	1	0	0	0	0	0	0	0	0	0	0
02:00	10	0	6	3	0	1	0	0	0	0	0	0	0	0
03:00	6	0	6	0	0	0	0	0	0	0	0	0	0	0
04:00	10	0	8	2	0	0	0	0	0	0	0	0	0	0
05:00	28	2	25	1	0	0	0	0	0	0	0	0	0	0
06:00	99	3	81	12	0	2	1	0	0	0	0	0	0	0
07:00	416	4	327	73	2	4	3	0	1	0	2	0	0	0
08:00	686	0	598	71	3	4	3	0	2	0	1	4	0	0
09:00	479	0	392	63	7	10	1	0	1	0	2	2	0	1
10:00	402	1	334	60	1	4	0	0	2	0	0	0	0	0
11:00	182	2	141	32	0	3	0	0	1	0	1	2	0	0
12:00	437	4	366	52	4	3	3	0	3	0	1	1	0	0
13:00	336	0	290	36	1	1	0	1	3	1	1	2	0	0
14:00	516	3	427	70	7	4	0	0	0	0	1	3	0	1
15:00	574	2	501	55	4	5	0	2	2	0	1	1	0	1
16:00	568	4	508	46	1	2	0	0	0	0	2	4	0	1
17:00	514	4	460	41	3	1	3	0	1	0	1	0	0	0
18:00	450	2	413	32	0	3	0	0	0	0	0	0	0	0
19:00	344	1	324	16	0	2	1	0	0	0	0	0	0	0
20:00	190	1	175	13	1	0	0	0	0	0	0	0	0	0
21:00	136	0	121	14	0	1	0	0	0	0	0	0	0	0
22:00	107	0	99	7	0	1	0	0	0	0	0	0	0	0
23:00	70	0	66	4	0	0	0	0	0	0	0	0	0	0
07-19	5560	26	4757	631	33	44	13	3	16	1	13	19	0	4
06-22	6329	31	5458	686	34	49	15	3	16	1	13	19	0	4
06-00	6506	31	5623	697	34	50	15	3	16	1	13	19	0	4
00-00	6602	33	5706	705	34	53	15	3	16	1	13	19	0	4

13 J une 2013	3	to	J une			Direction	Southboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	LIGHT GOODS VEHICLES	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI TRAI LER ARTIC	SIX AXLE MULTI- TRAI LER ARTIC	SEVEN OR MORE AXLE ARTIC
16 June 2013														
0000	41	1	37	3	0	0	0	0	0	0	0	0	0	0
01:00	18	0	15	3	0	0	0	0	0	0	0	0	0	0
02:00	15	0	13	2	0	0	0	0	0	0	0	0	0	0
03:00	13	0	11	1	0	0	0	0	0	0	0	1	0	0
04:00	11	0	7	4	0	0	0	0	0	0	0	0	0	0
05:00	16	2	11	2	0	0	0	0	1	0	0	0	0	0
06:00	97	3	87	6	0	0	1	0	0	0	0	0	0	0
07:00	148	0	130	14	1	0	0	1	1	0	1	0	0	0
08:00	204	1	180	19	1	1	0	0	2	0	0	0	0	0
09:00	353	2	330	18	0	1	0	0	2	0	0	0	0	0
10:00	364	8	328	25	0	0	0	0	2	0	0	0	0	1
11:00	460	2	430	25	1	0	1	0	0	0	1	0	0	0
12:00	499	2	461	36	0	0	0	0	0	0	0	0	0	0
13:00	423	3	399	20	1	0	0	0	0	0	0	0	0	0
14:00	408	1	386	20	0	0	0	0	1	0	0	0	0	0
15:00	386	2	358	21	1	0	4	0	0	0	0	0	0	0
16:00	400	1	374	24	1	0	0	0	0	0	0	0	0	0
17:00	317	1	292	21	0	1	0	1	1	0	0	0	0	0
18:00	276	2	260	13	0	0	0	0	1	0	0	0	0	0
19:00	217	3	204	9	0	1	0	0	0	0	0	0	0	0
20:00	167	3	156	5	0	1	0	0	0	0	1	0	0	1
21:00	93	0	86	7	0	0	0	0	0	0	0	0	0	0
22:00	80	2	69	9	0	0	0	0	0	0	0	0	0	0
23:00	39	0	37	2	0	0	0	0	0	0	0	0	0	0
07-19	4238	25	3928	256	6	3	5	2	10	0	2	0	0	1
06-22	4812	34	4461	283	6	5	6	2	10	0	3	0	0	2
06-00	4931	36	4567	294	6	5	6	2	10	0	3	0	0	2
00-00	5045	39	4661	309	6	5	6	2	11	0	3	1	0	2

13 J une 2013	3	to	J une			Direction	Southboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	$\begin{gathered} \text { CARS OR } \\ \text { CAR- } \\ \text { BASED } \\ \text { LGV } \\ \hline \end{gathered}$	LIGHT GOODS VEHI CLES	BUSES	$\begin{aligned} & \text { TWO } \\ & \text { AXLE, SIX } \\ & \text { TYRE, } \\ & \text { RIGID } \\ & \hline \end{aligned}$	THREE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { MORE } \\ \text { AXLE } \\ \text { RIGID } \\ \hline \end{gathered}$	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTITRAI LER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
17 June 2013														
0000	24	0	21	3	0	0	0	0	0	0	0	0	0	0
01:00	10	0	8	2	0	0	0	0	0	0	0	0	0	0
02:00	1	0	1	0	0	0	0	0	0	0	0	0	0	0
03:00	6	0	6	0	0	0	0	0	0	0	0	0	0	0
04:00	4	0	4	0	0	0	0	0	0	0	0	0	0	0
05:00	29	1	24	1	0	0	0	0	1	1	0	1	0	0
06:00	126	4	98	18	2	3	0	0	1	0	0	0	0	0
07:00	379	4	313	54	5	2	1	0	0	0	0	0	0	0
08:00	662	3	576	70	4	5	3	0	0	0	0	1	0	0
09:00	435	1	360	61	4	5	0	0	0	0	1	1	0	2
10:00	363	2	298	43	10	3	2	0	3	0	0	2	0	0
11:00	454	2	380	58	3	4	3	0	3	0	1	0	0	0
12:00	494	3	429	48	1	7	2	0	2	0	0	2	0	0
13:00	415	2	348	54	3	1	1	0	3	0	1	2	0	0
14:00	461	0	384	67	3	3	2	0	0	0	0	2	0	0
15:00	575	3	498	54	6	9	1	0	0	0	1	3	0	0
16:00	576	4	510	51	6	0	1	0	1	0	2	1	0	0
17:00	570	7	501	53	4	1	0	0	0	1	0	3	0	0
18:00	500	5	458	30	2	0	2	0	2	0	0	1	0	0
19:00	326	6	296	21	0	1	0	0	0	0	0	2	0	0
20:00	211	4	193	13	1	0	0	0	0	0	0	0	0	0
21:00	132	1	123	7	0	1	0	0	0	0	0	0	0	0
22:00	95	1	89	5	0	0	0	0	0	0	0	0	0	0
23:00	48	0	46	2	0	0	0	0	0	0	0	0	0	0
07-19	5884	36	5055	643	51	40	18	0	14	1	6	18	0	2
06-22	6679	51	5765	702	54	45	18	0	15	1	6	20	0	2
06-00	6822	52	5900	709	54	45	18	0	15	1	6	20	0	2
00-00	6896	53	5964	715	54	45	18	0	16	2	6	21	0	2

13 J une 2013			19 J une 2013			Direction	Southbound							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	$\begin{gathered} \text { CARS OR } \\ \text { CAR- } \\ \text { BASED } \\ \text { LGV } \\ \hline \end{gathered}$	$\begin{gathered} \text { LIGHT } \\ \text { GOODS } \\ \text { VEHICLES } \\ \hline \end{gathered}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI TRAI LER ARTIC	SIX AXLE MULTITRAI LER ARTIC	$\begin{gathered} \text { SEVEN OR } \\ \text { MORE } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$
18 June 2013														
0000	20	0	17	2	1	0	0	0	0	0	0	0	0	0
01:00	5	0	3	1	0	1	0	0	0	0	0	0	0	0
02:00	7	0	6	0	0	1	0	0	0	0	0	0	0	0
03:00	4	0	3	1	0	0	0	0	0	0	0	0	0	0
04:00	5	0	4	1	0	0	0	0	0	0	0	0	0	0
05:00	22	2	16	3	0	0	0	0	0	0	1	0	0	0
06:00	120	4	91	16	3	3	0	0	1	0	1	1	0	0
07:00	409	5	324	65	3	6	4	0	0	0	2	0	0	0
08:00	674	4	582	73	6	2	1	0	2	0	1	2	0	1
09:00	524	1	438	69	6	3	1	0	1	0	1	3	0	1
10:00	396	3	335	45	4	4	1	0	2	0	0	2	0	0
11:00	440	3	368	56	2	5	1	1	2	0	0	2	0	0
12:00	480	4	412	45	3	4	3	1	3	0	1	4	0	0
13:00	433	2	365	56	2	6	1	0	0	0	0	1	0	0
14:00	506	3	422	66	4	3	2	0	3	0	0	3	0	0
15:00	597	7	512	57	7	4	2	1	1	1	3	2	0	0
16:00	567	7	490	51	6	1	1	0	3	0	4	3	0	1
17:00	625	3	549	61	2	4	1	1	2	0	0	2	0	0
18:00	492	7	443	37	3	0	0	0	1	0	0	1	0	0
19:00	357	8	318	26	1	1	0	0	1	0	1	1	0	0
20:00	228	4	208	15	1	0	0	0	0	0	0	0	0	0
21:00	151	5	138	7	0	1	0	0	0	0	0	0	0	0
22:00	98	1	89	6	0	1	0	0	1	0	0	0	0	0
23:00	36	0	33	3	0	0	0	0	0	0	0	0	0	0
07-19	6143	49	5240	681	48	42	18	4	20	1	12	25	0	3
06-22	6999	70	5995	745	53	47	18	4	22	1	14	27	0	3
06-00	7133	71	6117	754	53	48	18	4	23	1	14	27	0	3
00-00	7196	73	6166	762	54	50	18	4	23	1	15	27	0	3

13 J une 2013			19 J une 2013			Direction	Southbound							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	$\begin{gathered} \text { CARS OR } \\ \text { CAR- } \\ \text { BASED } \\ \text { LGV } \\ \hline \end{gathered}$	$\begin{gathered} \text { LIGHT } \\ \text { GOODS } \\ \text { VEHICLES } \\ \hline \end{gathered}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI TRAI LER ARTIC	SIX AXLE MULTITRAI LER ARTIC	$\begin{gathered} \text { SEVEN OR } \\ \text { MORE } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$
19 June 2013														
0000	15	0	13	1	0	1	0	0	0	0	0	0	0	0
01:00	12	0	8	3	0	1	0	0	0	0	0	0	0	0
02:00	7	0	6	1	0	0	0	0	0	0	0	0	0	0
03:00	2	0	1	1	0	0	0	0	0	0	0	0	0	0
04:00	8	0	7	1	0	0	0	0	0	0	0	0	0	0
05:00	27	3	18	5	0	0	0	0	1	0	0	0	0	0
06:00	118	6	89	18	2	1	1	0	1	0	0	0	0	0
07:00	382	5	315	49	5	3	2	0	1	0	0	2	0	0
08:00	676	5	569	86	5	1	5	0	3	0	0	2	0	0
09:00	529	3	446	65	4	5	1	1	1	0	1	2	0	0
10:00	431	5	371	41	3	7	1	0	0	0	1	1	0	1
11:00	469	6	393	54	3	4	4	0	2	0	0	3	0	0
12:00	490	10	405	59	4	3	1	0	5	1	1	1	0	0
13:00	465	6	401	43	3	3	3	1	1	0	4	0	0	0
14:00	521	3	444	58	5	4	2	0	1	0	1	2	0	1
15:00	586	9	493	67	5	3	2	1	2	0	2	1	0	1
16:00	587	5	510	49	7	3	2	0	3	0	7	1	0	0
17:00	632	5	559	55	1	1	2	0	3	0	2	3	0	1
18:00	487	6	443	31	4	0	0	0	1	0	0	1	0	1
19:00	388	11	357	20	0	0	0	0	0	0	0	0	0	0
20:00	241	5	217	16	1	0	0	0	1	0	0	1	0	0
21:00	170	4	157	7	0	2	0	0	0	0	0	0	0	0
22:00	119	3	112	4	0	0	0	0	0	0	0	0	0	0
23:00	55	0	52	3	0	0	0	0	0	0	0	0	0	0
07-19	6255	68	5349	657	49	37	25	3	23	1	19	19	0	5
06-22	7172	94	6169	718	52	40	26	3	25	1	19	20	0	5
06-00	7346	97	6333	725	52	40	26	3	25	1	19	20	0	5
00-00	7417	100	6386	737	52	42	26	3	26	1	19	20	0	5

13 J une 20	3	to	J une			Direction	Southboun							
TIME PERIOD	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	LIGHT GOODS VEHICLES	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI - TRAI LER ARTIC	SIX AXLE MULTITRAILER ARTIC	SEVEN OR MORE AXLE ARTIC
Average Day														
0000	29	0	26	3	0	0	0	0	0	0	0	0	0	0
01:00	14	0	12	2	0	0	0	0	0	0	0	0	0	0
02:00	9	0	7	1	0	0	0	0	0	0	0	0	0	0
03:00	7	0	6	1	0	0	0	0	0	0	0	0	0	0
04:00	9	0	8	1	0	0	0	0	0	0	0	0	0	0
05:00	24	2	19	3	0	0	0	0	1	0	0	0	0	0
06:00	104	4	81	14	1	2	1	0	1	0	0	0	0	0
07:00	326	3	263	49	3	3	2	0	0	0	1	1	0	0
08:00	542	2	465	62	3	3	2	0	2	0	0	2	0	0
09:00	445	2	375	53	5	5	1	0	1	0	1	2	0	1
10:00	394	4	337	43	3	4	1	0	2	0	0	1	0	0
11:00	403	2	345	45	2	3	1	0	2	0	1	1	0	0
12:00	463	3	400	48	2	3	1	0	2	0	1	1	0	0
13:00	425	2	372	42	2	2	1	0	1	0	1	1	0	0
14:00	475	2	408	53	4	3	1	0	1	0	1	2	0	0
15:00	524	4	458	48	4	4	2	1	1	0	1	1	0	0
16:00	531	4	472	43	4	2	1	0	1	0	3	1	0	0
17:00	515	4	461	42	2	2	1	0	1	0	1	1	0	0
18:00	437	4	397	31	2	0	0	0	1	0	0	1	0	0
19:00	323	5	297	19	0	1	0	0	0	0	0	1	0	0
20:00	201	3	184	12	1	0	0	0	0	0	0	0	0	0
21:00	133	2	122	9	0	1	0	0	0	0	0	0	0	0
22:00	104	1	95	7	0	0	0	0	0	0	0	0	0	0
23:00	56	0	53	3	0	0	0	0	0	0	0	0	0	0
07-19	5480	37	4753	559	35	33	14	2	15	1	11	17	0	3
06-22	6242	51	5437	613	37	37	15	2	16	1	12	18	0	3
06-00	6402	52	5586	622	37	37	15	2	17	1	12	18	0	3
00-00	6495	54	5662	634	37	39	15	2	17	1	12	18	0	3

C0292	SULLY ATCs 13 J une 2013		to		19 J une 2013					Site Direction		1 Southbound		Location		B4267 Solly Moors Road -- Att to lamp post (51.40769 ${ }^{\circ}$ N$\left.3.22600^{\circ} \mathrm{W}\right)$						
					Speed Bins									Speed Limit (PSL)			ACPO (SL1)		DfT (SL2)			
Time Period	Total Vehicles	$\begin{gathered} 0 \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{gathered} 65 \\ 130 \end{gathered}$	30	30	$\begin{gathered} 35 \\ \text { ACPO } \end{gathered}$	$\begin{gathered} 35 \\ \text { ACPO } \end{gathered}$	$\begin{gathered} 45 \\ \text { DFT } \end{gathered}$	$\begin{gathered} 45 \\ \text { DFT } \end{gathered}$	Mean Speed	85\%le Speed
16 June 2013																						
0000	41	0	0	0	0	1	6	12	12	8	1	0	0	1	40	97.6	34	82.9	10	24.4	41.3	47.6
01:00	18	0	0	0	0	0	1	5	9	1	2	0	0	0	18	100	17	94.4	3	16.7	41.7	44.7
02:00	15	0	0	0	0	2	4	3	3	2	0	1	0	0	13	86.7	9	60	3	20	38.4	45.2
03:00	13	0	0	0	0	1	0	2	7	2	1	0	0	0	12	92.3	12	92.3	3	23.1	42.1	46.1
04:00	11	0	0	0	0	1	0	3	4	3	0	0	0	0	10	90.9	10	90.9	3	27.3	40.6	45
05:00	16	0	0	0	0	1	2	2	5	5	0	1	0	0	15	93.8	13	81.3	6	37.5	42.7	48.1
06:00	97	0	0	0	0	1	27	25	21	18	4	1	0	0	96	99	69	71.1	23	23.7	39.9	47
07:00	148	0	0	0	0	7	16	61	45	14	4	1	0	0	141	95.3	125	84.5	19	12.8	39.3	43.8
08:00	204	0	0	0	2	11	30	92	51	16	2	0	0	0	191	93.6	161	78.9	18	8.8	38.3	43.4
09:00	353	0	0	1	1	21	94	155	62	16	2	1	0	0	330	93.5	236	66.9	19	5.4	36.9	41.6
10:00	364	0	0	5	5	7	109	161	61	14	2	0	0	0	347	95.3	238	65.4	16	4.4	36.6	40.9
11:00	460	0	1	1	2	29	135	211	64	14	3	0	0	0	427	92.8	292	63.5	17	3.7	36.3	40.3
12:00	499	0	0	1	1	27	166	226	68	9	1	0	0	0	470	94.2	304	60.9	10	2	36	40
13:00	423	0	2	0	1	35	118	177	71	15	4	0	0	0	385	91	267	63.1	19	4.5	36.5	41.2
14:00	408	0	0	0	2	19	142	167	66	10	1	1	0	0	387	94.9	245	60	12	2.9	36.4	40.7
15:00	386	0	0	0	2	22	112	160	72	15	0	3	0	0	362	93.8	250	64.8	18	4.7	36.8	40.9
16:00	400	0	0	0	0	21	116	173	69	18	2	1	0	0	379	94.8	263	65.8	21	5.3	37	41.2
17:00	317	0	0	0	2	19	57	150	69	14	5	0	0	1	296	93.4	239	75.4	20	6.3	37.6	41.8
18:00	276	0	0	1	0	2	58	113	74	21	7	0	0	0	273	98.9	215	77.9	28	10.1	38.7	43.6
19:00	217	0	0	0	0	3	30	103	51	21	8	1	0	0	214	98.6	184	84.8	30	13.8	39.7	44.1
20:00	167	0	0	0	3	3	27	62	42	22	2	5	1	0	161	96.4	134	80.2	30	18	39.6	45.2
21:00	93	0	0	0	0	5	13	42	20	7	2	3	0	1	88	94.6	75	80.6	13	14	39.5	44.7
22:00	80	0	0	0	0	1	17	22	33	4	3	0	0	0	79	98.8	62	77.5	7	8.8	39.4	44.1
23:00	39	0	0	0	0	0	7	6	13	11	1	1	0	0	39	100	32	82.1	13	33.3	42	47.2
07-19	4238	0	3	9	18	220	1153	1846	772	176	33	7	0	1	3988	94.1	2835	66.9	217	5.1	36.9	41.2
06-22	4812	0	3	9	21	232	1250	2078	906	244	49	17	1	2	4547	94.5	3297	68.5	313	6.5	37.3	41.8
06-00	4931	0	3	9	21	233	1274	2106	952	259	53	18	1	2	4665	94.6	3391	68.8	333	6.8	37.3	41.8
00-00	5045	0	3	9	21	239	1287	2133	992	280	57	20	1	3	4773	94.6	3486	69.1	361	7.2	37.4	42.1

C0292 SULLY ATCs

13 J une 2013	to	
TIME	TOTAL	MOTOR-
PERIOD	VEHICLES	CYCLES

J une 2013

CARS OR CARBASED BASED GOODS LGV VEHICLES BUSES

Direction Two-Way

AXLE, SIX	THREE	MORE	LESS
TYRE,	AXLE	AXLE	AXLE
FIVE AXLE			
RIGID	RIGID	RIGID	ARTIC

FIVE OR
LESS
AXLE SIXAXLE SEVEN OR MULTI - MULTI - MORE TRAILER TRAILER AXLE ARTIC ARTIC ARTIC 13 June 2013

0000	52	0	47	5	0	0	0	0	0	0	0	0	0	0
01:00	21	1	17	1	0	1	0	0	0	0	1	0	0	0
02:00	17	0	14	3	0	0	0	0	0	0	0	0	0	0
03:00	14	0	13	1	0	0	0	0	0	0	0	0	0	0
04:00	22	0	19	2	0	0	0	0	0	0	0	1	0	0
05:00	69	2	57	5	0	1	0	0	2	0	1	1	0	0
06:00	230	7	175	36	2	2	1	0	4	0	0	3	0	0
07:00	827	6	693	94	4	10	6	1	3	0	3	6	0	1
08:00	1367	4	1205	117	3	16	3	0	6	0	5	6	0	2
09:00	1055	6	900	100	9	18	4	1	5	0	6	5	0	1
10:00	845	1	726	82	2	15	4	0	5	0	2	6	0	2
11:00	838	4	735	72	3	10	3	0	4	0	2	5	0	0
12:00	901	4	779	88	5	10	2	0	3	1	2	5	0	2
13:00	923	6	811	77	2	9	4	0	4	0	6	3	0	1
14:00	898	4	779	85	5	9	2	0	3	0	4	7	0	0
15:00	1127	7	988	102	3	11	2	0	4	0	5	4	0	1
16:00	1183	9	1059	86	3	11	2	0	4	0	2	5	0	2
17:00	1136	6	1059	47	1	5	4	0	7	0	3	3	0	1
18:00	888	12	809	53	3	3	1	1	1	0	2	3	0	0
19:00	647	5	609	24	0	1	0	0	5	0	0	3	0	0
20:00	461	5	439	15	1	0	0	0	1	0	0	0	0	0
21:00	307	2	291	12	0	1	0	0	1	0	0	0	0	0
22:00	246	4	236	5	0	1	0	0	0	0	0	0	0	0
23:00	120	0	115	5	0	0	0	0	0	0	0	0	0	0
07-19	11988	69	10543	1003	43	127	37	3	49	1	42	58	0	13
06-22	13633	88	12057	1090	46	131	38	3	60	1	42	64	0	13
06-00	13999	92	12408	1100	46	132	38	3	60	1	42	64	0	13
00-00	14194	95	12575	1117	46	134	38	3	62	1	44	66	0	13

C0292 SULLY ATCs

C0292 SULLY ATCs

13 J une 2013			19 J une 2013			Direction	Two-Way							
$\begin{aligned} & \text { TI ME } \\ & \text { PERI OD } \end{aligned}$	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	LIGHT GOODS VEHICLES	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI - TRAI LER ARTIC	SIX AXLE MULTITRAI LER ARTIC	SEVEN OR MORE AXLE ARTIC
15 June 2013														
0000	99	1	88	10	0	0	0	0	0	0	0	0	0	0
01:00	59	0	50	8	0	0	0	0	0	0	1	0	0	0
02:00	30	0	26	4	0	0	0	0	0	0	0	0	0	0
03:00	26	0	23	3	0	0	0	0	0	0	0	0	0	0
04:00	26	0	24	1	0	0	0	0	0	0	0	1	0	0
05:00	45	1	36	5	0	1	0	0	2	0	0	0	0	0
06:00	129	4	106	11	1	4	0	0	1	0	1	1	0	0
07:00	239	2	198	30	2	3	0	0	0	0	2	2	0	0
08:00	426	6	360	44	1	5	1	0	3	0	1	5	0	0
09:00	624	5	561	42	5	5	0	0	2	0	2	2	0	0
10:00	794	10	730	47	0	2	3	0	0	0	0	2	0	0
11:00	886	5	807	54	1	3	5	0	8	0	0	1	0	2
12:00	877	4	799	65	1	3	2	0	2	0	1	0	0	0
13:00	940	6	881	48	1	1	0	0	2	0	1	0	0	0
14:00	916	6	863	38	1	1	4	0	2	0	0	0	0	1
15:00	835	9	786	32	1	1	1	0	3	0	1	1	0	0
16:00	835	6	788	33	1	1	1	1	3	0	1	0	0	0
17:00	792	7	738	41	2	1	1	0	2	0	0	0	0	0
18:00	704	6	652	37	1	2	1	0	4	0	0	1	0	0
19:00	554	5	524	21	0	1	1	0	2	0	0	0	0	0
20:00	360	5	337	13	1	1	0	0	3	0	0	0	0	0
21:00	242	4	225	12	0	0	0	0	1	0	0	0	0	0
22:00	227	3	208	14	0	1	0	0	1	0	0	0	0	0
23:00	166	3	157	6	0	0	0	0	0	0	0	0	0	0
07-19	8868	72	8163	511	17	28	19	1	31	0	9	14	0	3
06-22	10153	90	9355	568	19	34	20	1	38	0	10	15	0	3
06-00	10546	96	9720	588	19	35	20	1	39	0	10	15	0	3
00-00	10831	98	9967	619	19	36	20	1	41	0	11	16	0	3

C0292 SULLY ATCs

13 J une 2013	to	
TIME	TOTAL	MOTOR-
PERIOD	VEHICLES	CYCLES

Site 1 16 June 2013

0000	102	2	94	5	0	0	0	0	0	0	1	0	0	0
01:00	39	0	33	5	0	0	1	0	0	0	0	0	0	0
02:00	36	0	34	2	0	0	0	0	0	0	0	0	0	0
03:00	22	0	20	1	0	0	0	0	0	0	0	1	0	0
04:00	23	0	18	4	0	0	0	0	0	0	1	0	0	0
05:00	35	3	25	5	0	0	0	0	2	0	0	0	0	0
06:00	140	4	128	7	0	0	1	0	0	0	0	0	0	0
07:00	215	1	196	14	1	0	0	1	1	0	1	0	0	0
08:00	375	5	341	24	1	2	0	0	2	0	0	0	0	0
09:00	658	12	618	21	0	1	0	0	5	0	0	1	0	0
10:00	857	11	799	37	0	1	2	0	6	0	0	0	0	1
11:00	923	3	881	29	1	1	3	0	2	0	3	0	0	0
12:00	977	4	926	42	0	1	3	0	1	0	0	0	0	0
13:00	823	5	787	26	1	1	0	0	2	0	0	1	0	0
14:00	882	3	847	29	0	1	0	0	2	0	0	0	0	0
15:00	827	5	785	29	1	0	5	0	2	0	0	0	0	0
16:00	781	2	741	33	1	1	1	0	1	0	1	0	0	0
17:00	667	13	625	24	0	2	0	1	2	0	0	0	0	0
18:00	576	6	552	16	0	0	0	0	2	0	0	0	0	0
19:00	430	7	408	12	0	1	0	0	2	0	0	0	0	0
20:00	358	7	335	8	0	2	1	0	2	0	1	1	0	1
21:00	209	1	200	7	0	1	0	0	0	0	0	0	0	0
22:00	144	2	132	10	0	0	0	0	0	0	0	0	0	0
23:00	75	1	71	3	0	0	0	0	0	0	0	0	0	0
07-19	8561	70	8098	324	6	11	14	2	28	0	5	2	0	1
06-22	9698	89	9169	358	6	15	16	2	32	0	6	3	0	2
06-00	9917	92	9372	371	6	15	16	2	32	0	6	3	0	2
00-00	10174	97	9596	393	6	15	17	2	34	0	8	4	0	2

Sky High-Count On Us 8
C0292 SULLY ATCs

13 J une 2013			19 J une 2013			Direction	Two-Way							
$\begin{aligned} & \text { TI ME } \\ & \text { PERI OD } \end{aligned}$	TOTAL VEHICLES	MOTORCYCLES	CARS OR CARBASED LGV	LIGHT GOODS VEHICLES	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	FOUR OR LESS AXLE ARTIC	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI - TRAI LER ARTIC	SIX AXLE MULTI- TRAI LER ARTIC	SEVEN OR MORE AXLE ARTIC
17 June 2013														
0000	43	1	39	3	0	0	0	0	0	0	0	0	0	0
01:00	16	0	14	2	0	0	0	0	0	0	0	0	0	0
02:00	6	0	5	1	0	0	0	0	0	0	0	0	0	0
03:00	14	0	12	2	0	0	0	0	0	0	0	0	0	0
04:00	16	1	13	2	0	0	0	0	0	0	0	0	0	0
05:00	71	2	62	4	0	0	0	0	1	1	0	1	0	0
06:00	240	8	193	26	2	4	1	1	3	0	0	2	0	0
07:00	782	8	664	80	5	10	5	0	5	1	1	1	0	2
08:00	1317	8	1184	94	5	11	10	0	2	0	2	1	0	0
09:00	946	2	828	90	4	13	2	0	0	0	4	1	0	2
10:00	781	5	657	81	11	10	4	0	6	0	2	5	0	0
11:00	860	10	741	88	3	5	4	0	5	0	3	0	0	1
12:00	977	6	873	72	1	11	4	0	5	0	0	5	0	0
13:00	838	7	727	80	3	5	2	0	7	0	4	3	0	0
14:00	908	8	778	98	3	7	4	0	3	0	2	3	0	2
15:00	1202	6	1062	89	6	17	7	0	4	0	2	8	0	1
16:00	1243	8	1125	89	6	4	4	0	3	0	2	2	0	0
17:00	1175	11	1069	74	4	5	3	0	3	1	2	3	0	0
18:00	933	16	868	39	2	2	2	0	3	0	0	1	0	0
19:00	624	15	568	33	0	1	1	0	2	0	1	3	0	0
20:00	456	8	430	16	1	0	0	0	1	0	0	0	0	0
21:00	277	2	261	13	0	1	0	0	0	0	0	0	0	0
22:00	205	2	195	7	0	1	0	0	0	0	0	0	0	0
23:00	96	1	91	4	0	0	0	0	0	0	0	0	0	0
07-19	11962	95	10576	974	53	100	51	0	46	2	24	33	0	8
06-22	13559	128	12028	1062	56	106	53	1	52	2	25	38	0	8
06-00	13860	131	12314	1073	56	107	53	1	52	2	25	38	0	8
00-00	14026	135	12459	1087	56	107	53	1	53	3	25	39	0	8

C0292 SULLY ATCs

C0292 SULLY ATCs

C0292 SULLY ATCs

13 J une 2013			19 J une 2013			Direction	Two-Way							
$\begin{aligned} & \text { TIME } \\ & \text { PERIOD } \end{aligned}$	TOTAL VEHICLES	MOTORCYCLES	$\begin{gathered} \text { CARS OR } \\ \text { CAR- } \\ \text { BASED } \\ \text { LGV } \\ \hline \end{gathered}$	$\begin{gathered} \text { LIGHT } \\ \text { GOODS } \\ \text { VEHICLES } \\ \hline \end{gathered}$	BUSES	TWO AXLE, SIX TYRE, RIGID	THREE AXLE RIGID	FOUR OR MORE AXLE RIGID	$\begin{gathered} \text { FOUR OR } \\ \text { LESS } \\ \text { AXLE } \\ \text { ARTIC } \\ \hline \end{gathered}$	FIVE AXLE ARTIC	SIX OR MORE AXLE ARTIC	FIVE OR LESS AXLE MULTI TRAI LER ARTIC	SIX AXLE MULTITRAI LER ARTIC	$\begin{aligned} & \text { SEVEN OR } \\ & \text { MORE } \\ & \text { AXLE } \\ & \text { ARTIC } \\ & \hline \end{aligned}$
Average Day														
0000	61	1	55	5	0	0	0	0	0	0	0	0	0	0
01:00	26	0	22	3	0	0	0	0	0	0	0	0	0	0
02:00	18	0	15	3	0	0	0	0	0	0	0	0	0	0
03:00	16	0	15	2	0	0	0	0	0	0	0	0	0	0
04:00	21	0	17	3	0	0	0	0	0	0	0	0	0	0
05:00	57	3	47	5	0	0	0	0	1	0	1	1	0	0
06:00	204	6	167	21	1	3	1	0	2	0	1	2	0	0
07:00	641	6	541	70	3	9	4	0	3	0	2	2	0	1
08:00	1073	7	950	85	4	10	6	0	4	0	2	3	0	1
09:00	914	6	801	78	5	11	3	0	3	0	3	3	0	1
10:00	840	7	736	72	3	8	3	0	4	0	2	3	0	1
11:00	847	6	751	68	2	6	3	0	5	0	2	3	0	1
12:00	949	7	846	74	3	6	3	0	4	0	1	3	0	0
13:00	883	7	794	62	2	6	3	0	3	0	3	2	0	0
14:00	952	8	845	76	4	6	3	0	4	0	2	3	0	1
15:00	1100	8	991	75	4	8	4	1	4	0	2	4	0	1
16:00	1090	9	992	67	4	5	2	0	4	0	3	3	0	1
17:00	1047	10	962	58	2	4	3	0	5	0	1	2	0	0
18:00	849	12	787	39	2	3	1	0	3	0	1	1	0	0
19:00	612	10	572	24	0	1	1	0	2	0	0	1	0	0
20:00	435	8	408	16	1	1	0	0	2	0	0	0	0	0
21:00	293	3	277	12	0	1	0	0	1	0	0	0	0	0
22:00	212	3	199	8	0	1	0	0	1	0	0	0	0	0
23:00	113	2	106	5	0	0	0	0	0	0	0	0	0	0
07-19	11182	93	9996	823	37	81	38	2	46	1	24	33	0	7
06-22	12727	119	11419	895	39	87	40	3	52	2	26	37	0	7
06-00	13051	124	11725	908	39	89	40	3	53	2	26	37	0	7
00-00	13250	128	11895	928	40	90	40	3	54	2	27	38	0	7

C0292	SULLY ATCs 13 J une 2013		to		19 J une 2013					Site Direction		1 Two-Way		Location		B4267 Solly Moors Road -- Att to lamp post (51.40769 ${ }^{\circ}$ N $\left.3.22600^{\circ} \mathrm{W}\right)$						
					Speed Bins									Speed Limit (PSL)			ACPO (SL1)		DfT (SL2)			
Time Period	Total Vehicles	$\begin{gathered} 0 \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{gathered} 65 \\ 130 \end{gathered}$	30	30	$\begin{gathered} 35 \\ \text { ACPO } \end{gathered}$	$\begin{gathered} 35 \\ \text { ACPO } \end{gathered}$	$\begin{gathered} 45 \\ \text { DFT } \end{gathered}$	$\begin{gathered} 45 \\ \text { DFT } \end{gathered}$	Mean Speed	85\%le Speed
19 June 2013																						
0000	28	0	0	0	0	6	5	3	9	5	0	0	0	0	22	78.6	17	60.7	5	17.9	37.6	45.2
01:00	20	0	0	0	1	1	7	5	4	2	0	0	0	0	18	90	11	55	2	10	36.4	43.4
02:00	10	0	0	0	0	1	1	5	3	0	0	0	0	0	9	90	8	80	0	0	37.7	-
03:00	9	0	0	0	0	1	6	1	0	1	0	0	0	0	8	88.9	2	22.2	1	11.1	34.2	-
04:00	22	1	0	0	0	3	9	5	1	1	1	0	1	0	18	81.8	9	40.9	3	13.6	35.6	40.5
05:00	67	0	1	0	0	3	25	21	7	5	3	2	0	0	63	94	38	56.7	10	14.9	37.4	44.3
06:00	224	0	1	7	1	11	65	71	48	9	10	1	0	0	204	91.1	139	62.1	20	8.9	36.9	42.5
07:00	800	0	0	7	9	64	284	288	115	24	6	3	0	0	720	90	436	54.5	33	4.1	35.8	40.7
08:00	1350	0	6	11	19	227	568	389	111	17	2	0	0	0	1087	80.5	519	38.4	19	1.4	33.7	38.5
09:00	1051	0	0	0	21	193	434	305	85	11	2	0	0	0	837	79.6	403	38.3	13	1.2	33.8	38.7
10:00	887	0	3	3	15	170	362	253	72	8	0	1	0	0	696	78.5	334	37.7	9	1	33.6	38.5
11:00	906	0	1	3	16	170	392	252	62	8	2	0	0	0	716	79	324	35.8	10	1.1	33.6	37.8
12:00	1005	0	1	13	11	175	462	252	76	12	3	0	0	0	805	80.1	343	34.1	15	1.5	33.6	38.3
13:00	955	0	4	7	26	172	419	226	88	9	4	0	0	0	746	78.1	327	34.2	13	1.4	33.5	38.7
14:00	1043	0	1	5	19	191	464	264	83	10	2	3	0	1	827	79.3	363	34.8	16	1.5	33.7	38.5
15:00	1238	0	0	1	9	260	536	334	88	9	1	0	0	0	968	78.2	432	34.9	10	0.8	33.5	37.8
16:00	1169	0	1	2	18	183	528	322	100	11	3	1	0	0	965	82.5	437	37.4	15	1.3	34	38.5
17:00	1256	0	1	3	14	124	575	382	134	19	4	0	0	0	1114	88.7	539	42.9	23	1.8	34.7	39.4
18:00	971	0	1	17	13	125	392	294	94	30	3	2	0	0	815	83.9	423	43.6	35	3.6	34.6	39.4
19:00	727	0	2	7	9	83	277	211	111	22	4	1	0	0	626	86.1	349	48	27	3.7	35.3	40.7
20:00	512	0	0	2	3	59	190	158	60	30	6	2	2	0	448	87.5	258	50.4	40	7.8	35.9	41.6
21:00	410	0	0	1	19	76	179	94	27	10	2	2	0	0	314	76.6	135	32.9	14	3.4	33.6	38.5
22:00	254	0	0	1	0	33	91	84	22	16	3	4	0	0	220	86.6	129	50.8	23	9.1	35.7	40.7
23:00	109	0	0	0	0	9	43	26	19	11	1	0	0	0	100	91.7	57	52.3	12	11	36.6	43.2
07-19	12631	0	19	72	190	2054	5416	3561	1108	168	32	10	0	1	10296	81.5	4880	38.6	211	1.7	34	38.7
06-22	14504	0	22	89	222	2283	6127	4095	1354	239	54	16	2	1	11888	82	5761	39.7	312	2.2	34.2	38.9
06-00	14867	0	22	90	222	2325	6261	4205	1395	266	58	20	2	1	12208	82.1	5947	40	347	2.3	34.2	38.9
00-00	15023	1	23	90	223	2340	6314	4245	1419	280	62	22	3	1	12346	82.2	6032	40.2	368	2.4	34.2	39.1

Classification Schemes

Scheme F Classification Scheme (Non-metric)

Scheme F is an attempt to implement the FWHA's visual classification scheme as an axle-based classification scheme. This is one of several interpretations.

Class	Vehicle Type	No. of Axles	Axle spacing in feet				
			Axle 1 to 2	$\begin{gathered} \text { Axle } \\ 2 \text { to } 3 \\ \hline \end{gathered}$	Axle 3 to 4	$\begin{gathered} \text { Axle } \\ 4 \text { to } 5 \end{gathered}$	$\begin{gathered} \text { Axle } \\ 5 \text { to } 6 \end{gathered}$
1	motorcycle	2	<6.0				
2	passenger car	2	6.0-10.0				
	car + 1 axle trailer	3	<10.0	10.0-18.0			
	car + 2 axle trailer	4	<10.0		<3.5		
3	pickup	2	10.0-15.0				
	pickup + 1 axle trailer	3	10.0-15.0	10.0-18.0			
	pickup + 2 axle trailer	4	10.0-15.0		<3.5		
	pickup + 3 axle trailer	5	9.9-15.0			<3.5	
4	bus	2	>20.0				
	bus	3	>19.0				
5	single unit truck - dual rear axle	2	14.9-20.0			<3.5	
6	3 axle truck	3		<18.0			
7	4 axle truck	4					
8	2S1	3		>18.0			
	2S2	4		>5.0	>3.5		
	3S1	4		<5.0	>10.0		
9	3S2	5		<6.1		3.5-8.0	
	5 axle combination	5					
10	6 axle combination	6			3.5-5.0		
	3S3	6					
11	2S1-2	5		>6.0			
12	3S1-2	6					>10.0
13	truck	7 or more					

APPENDIX B

Vale of Glamorgan
 Vale of Glamorgan Modelling Modelling Results

Rep/2014/239768/01

Draft 2 | 22 December 2014

This report takes into account the particular instructions and requirements of our client.
It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 239768-00

Contents

Page
1 Introduction 1
1.1 Merrie Harrier Junction 1
1.2 Biglis Junction 3
1.3 Traffic Counts 5
2 Future Traffic 7
3 Junction Analysis 10
3.1 Merrie Harrier 10
3.2 Biglis Junction 29
4 Conclusion and Recommendations 40
4.1 Conclusion 40
4.2 Recommendations 41

1 Introduction

Ove Arup and Partners Ltd (hereafter referred to as Arup) have been appointed by the Vale of Glamorgan Council to undertake analysis of two existing junctions and two possible upgrade scenarios for each junction. Each layout is to be assessed with 2014, 2019 and 2024 traffic volumes.

The two junctions to be assessed are the junction of Penlan Road/Barry Road/Cardiff Road, also known as Merrie Harrier, and the junction of Barry Docks Link Road/Cardiff Road/Sully Moors Road in Barry, also known as Biglis. The location of these can be seen in Figure 1.

Figure 1: Location of Merrie Harrier and Biglis Junctions

The layouts have been designed by the Vale of Glamorgan and Arup's commission is to test these for 2014, 2019 and 2024 traffic flows and to write a report outlining the results of the modelling. Arup has not been commissioned to undertake any design work. Although by utilising our knowledge and experience possible small scale suggestions for improvements may be provided in the recommendations of this report.

Traffic counts and queue length surveys were commissioned by the Vale of Glamorgan and these were undertaken on 2 April 2014.

1.1 Merrie Harrier Junction

This is currently operating as a signal controlled junction with a bus lane and bus gate to the south-west of the junction on Cardiff Road, for completion this has been included in the model.

The main road through the junction, Barry Road and Cardiff Road, is two lanes and Penlan and Redland Road are single lane roads with flared approaches to the junction. The existing layout can be seen in Figure 2.

Figure 2: Existing Merrie Harrier Junction Layout

The two options remain signalised with additional lanes through the junction in order to provide more capacity and the additional pedestrian crossings. The two options tested can be seen in Figure 3 and Figure 4.

Figure 3: Option 4 Merrie Harrier Junction Layout

Figure 4: Option 5 Merrie Harrier Junction Layout

1.2 Biglis Junction

The Biglis junction currently operates as a roundabout with lane markings on the northern and western arm that result in uneven lane utilisation. For the northern arm the offside arm is for left and u-turners only and for the western arm the nearside lane is for right turners only.

The western arm is the only one that has two lanes on approach for more than 100 m , so can be classed as a two lane approach. The remaining arms are all one lane approaches with a flare of various lengths. The existing layout can be seen in Figure 5. The layouts for Option B and Option 1 can be seen in Figure 6 and Figure 7.

Figure 5: Existing Biglis Junction Layout

Option B sees the junction remain as a roundabout with the flares on the northern, eastern and southern arms lengthened to increase the capacity of the roundabout.
Figure 6: Biglis Junction Option B Layout

Option 1 sees the junction signalised with the northern, eastern and southern arms consisting of one lane on approach with two flared lanes, thus providing three
lanes at the stopline. The western arm remains as two lanes on approach with a flare so there are three lanes at the stopline.

Figure 7: Biglis Junction Option 1 Layout

1.3 Traffic Counts

As stated above a 12 hour traffic count survey was undertaken on 2 April 2014 from 7am to 7pm. The peak hour was determined for the AM and PM peak hours and these were $07: 45$ to $08: 45$ for the AM peak and 16:45 to 17:45 for the PM peak hour.
These counts were then converted into Passenger Car Unit (PCU's) for use in the modelling software. For this a light vehicle is equivalent to 1 PCU and a heavy vehicle is equivalent to 2 PCU's.
The resulting traffic counts for the two sites for the AM and PM peaks can be seen in Figure 8 and Figure 9 for Merrie Harrier and Biglis respectively.

Figure 8: Merrie Harrier 2014 Traffic Flows (PCUs)
Merrie Herrier

AM Peak 7.45am-8.45am
PM Peak 4.45pm-5.45pm
AM Peak buses
PM Peak buses

Figure 9: Biglis 2014 Traffic Flows (PCU's)
Biglis
AM Peak 7.45am-8.45am
PM Peak 4.45pm-5.45pm

2 Future Traffic

For this assessment it has been requested that each junction is assessed with the existing traffic flows and then for five years and ten years’ time, ie 2019 and 2024.

To determine the growth factor required to increase the 2014 traffic counts to 2019 and 2024 the TEMPRO database and the Road Transport Forecast were used to calculate this factor.

The resultant growth factors used for increasing the 2014 traffic counts can be seen in Table 1.

Table 1: Growth Factors for 2014-2019 and 2014 to 2024

	$\mathbf{2 0 1 4}$ - $\mathbf{2 0 1 9}$	$\mathbf{2 0 1 4}$ - 2024
AM Peak	1.0598	1.323
PM Peak	1.0583	1.1270

The resultant traffic flows for the two junctions for 2019 and 2024 can be seen in Figure 10, Figure 11, Figure 12 and Figure 13.

Figure 10: Merrie Harrier 2019 Traffic Flows (PCU's)
Merrie Herrier
AM Peak 7.45am-8.45am
PM Peak 4.45pm-5.45pm
AM Peak buses
PM Peak buses

Figure 11: Merrie Harrier 2024 Traffic Flows (PCU's)
Merrie Herrier
AM Peak $7.45 \mathrm{am}-8.45 \mathrm{am}$
PM Peak $4.45 \mathrm{pm}-5.45 \mathrm{pm}$
AM Peak buses
PM Peak buses

Figure 12: Biglis 2019 Traffic Flows (PCU's)
Biglis
AM Peak 7.45am-8.45am
PM Peak 4.45pm-5.45pm

Eigqure 13: Biglis 2024 Traffic Flows (PCU's)
AM Peak 7.45am-8.45am
PM Peak 4.45pm-5.45pm

3 Junction Analysis

3.1 Merrie Harrier

3.1.1 Existing Layout

The existing layout of the Merrie Harrier junction has been assessed using LINSIG version 3 software.

The results of the AM peak for the Merrie Harrier assessment can be seen in Table 2.

Table 2: Existing Layout with AM Peak 2014 Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	45.4\%	65.5	2.0
		Offside	49.2\%	38.0	6.0
	Barry Road	Nearside	51.3\%	15.2	9.7
		Offside	62.5\%	32.5	3.3
	Cardiff Road	Nearside	23.2\%	1.2	0.2
		Offside	63.6\%	6.2	12.0
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	30.9\%	2.4	1.4
		Middle	41.7\%	14.6	5.9
		Offside	19.6\%	20.1	1.6
	Redlands Road	Nearside	85.5\%	54.7	13.6
		Offside	78.8\%	46.0	12.6
	Cardiff Road (west)	Nearside	81.4\%	30.6	13.5
		Offside	32.9\%	25.6	1.9
Cardiff Road Bus Gate	Cardiff Road (east)		26.2\%	1.6	1.0
	Cardiff Road (west)		130.3\%	499.3	104.1
	Bus Gate		2.2\%	15.3	0.3
Overall PRC (\%)					-44.8\%
Overall Delay (seconds)					124.2\%
Cycle Time (seconds)					96 seconds

The results from the AM peak model show that the only link that is over capacity is the Cardiff Road (west) arm at the bus gate.

On-site observations and results from the queue length survey show that during the AM peak this arm always has an excessive queue. Observations from a site visit show that the bus gate restricts the movement of vehicles to the stopline of
the junction and this results in the excessive queues on this arm. The weightings in the model have been adjusted to reflect the current operation of the junction.

The remaining queue lengths and patterns are similar to those in the queue length surveys and it is felt that this model accurately represents the AM peak situation at Merrie Harrier.

One measurement used to assess a junction is the Practical Reserve Capacity (PRC). The PRC is an indication as to whether or not the junction has any spare capacity in its operation to cope with additional traffic. If a PRC is positive then it indicates that a junction is operating within capacity and would be able to accommodate additional traffic. If the PRC is negative then this indicates the junction is over capacity and not able to accommodate any additional traffic.

Overall all this junction operates over capacity with a Practical Reserve Capacity (PRC) of -44.8\%.

Table 3: Existing Layout with 2014 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
	Benlan Road	Barry Road	Nearside	70.7%	76.5

Table 3 shows the results of the existing layout with 2019 PM peak traffic flows.
The results for the PM peak show that the Merrie Harrier junction operates within capacity for the PM peak and those excessive queues at the Bus Gate that are
present in the AM peak are not present in the PM peak. On-site observations indicate that the junction operates within capacity during the PM peak.

The queues modelled in the PM peak are representative of those from the queue survey undertaken at the same time as the traffic counts.

The excessive delay on the bus gate is due to the cycle time and the low number of vehicles that utilise the bus gate. On site the bus gate is vehicle actuated so the delay is lower than that predicted by the model.

Table 4: Existing Layout with 2019 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	48.3\%	66.8	2.2
		Offside	52.2\%	38.7	6.4
	Barry Road	Nearside	55.4\%	15.9	10.8
		Offside	66.5\%	36.4	3.5
	Cardiff Road	Nearside	24.3\%	1.2	0.2
		Offside	65.8\%	7.4	13.4
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	32.7\%	2.5	1.5
		Middle	46.2\%	15.0	6.5
		Offside	20.8\%	23.0	1.9
	Redlands Road	Nearside	87.4\%	56.5	14.9
		Offside	80.6\%	46.4	13.4
	Cardiff Road (west)	Nearside	84.5\%	32.9	13.9
		Offside	35.0\%	25.3	1.8
Cardiff Road Bus Gate	Cardiff Road (east)		27.8\%	1.8	1.2
	Cardiff Road (west)		138.1\%	585.5	130.2
	Bus Gate		2.2\%	15.3	0.3
Overall PRC (\%)					-53.4\%
Overall Delay (seconds)					150.09
Cycle Time (seconds)					96

Table 4 shows the results of the existing layout with 2019 AM peak traffic flows.
The impact of the 2019 AM peak traffic flows is that the operation of the junction worsens as the overall PRC has changed from -44.8% to -53.4% indicating a reduction in the PRC.

With the 2019 traffic flows the Cardiff Road (west) at the bus gate remains the only arm that has a degree of saturation of more than 90%, although the Redlands Road and Cardiff (west) arms of the Cardiff Road / Redlands Road junction are greater than 80% indicating they are close to capacity.

Table 5: Existing Layout with 2019 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	74.8\%	80.7	6.7
		Offside	75.6\%	54.2	13.6
	Barry Road	Nearside	79.2\%	25.6	25.1
		Offside	67.3\%	31.2	4.9
	Cardiff Road	Nearside	11.8\%	1.0	0.1
		Offside	64.1\%	7.5	12.1
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	49.2\%	3.0	2.7
		Middle	44.9\%	9.9	7.9
		Offside	28.0\%	11.5	2.3
	Redlands Road	Nearside	74.5\%	63.4	9.5
		Offside	77.5\%	64.1	11.4
	Cardiff Road (west)	Nearside	79.1\%	41.6	16.1
		Offside	47.8\%	62.7	2.9
Cardiff Road Bus Gate	Cardiff Road (east)		43.8\%	3.4	14.5
	Cardiff Road (west)		65.9\%	7.9	8.3
	Bus Gate		13.9\%	66.5	0.7
Overall PRC (\%)					13.7\%
Overall Delay (seconds)					45.15
Cycle Time (seconds)					120

Table 5 shows the results of the existing layout with 2019 PM peak traffic flows.
The results of modelling the PM peak 2019 traffic flows with the existing layout indicate a worsening of the operation of the junction as the PRC has decreased from 20.1% to 13.7%.

None of the lanes have a degree of saturation of more than 80%, but some of the lanes associated with the Penlan Road/Barry Road junction have degree of saturation of more than 70%.

Some of the links are experiencing excessive queues that on occasions will queue back to the downstream junction.

Table 6: Existing Layout with 2024 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	51.2\%	68.3	2.3
		Offside	55.7\%	39.6	6.9
	Barry Road	Nearside	61.6\%	17.2	12.8
		Offside	67.0\%	39.9	3.3
	Cardiff Road	Nearside	25.6\%	1.2	0.2
		Offside	68.3\%	8.8	14.9
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	35.0\%	2.6	1.7
		Middle	54.6\%	16.3	7.9
		Offside	19.3\%	27.9	2.0
	Redlands Road	Nearside	90.2\%	60.8	16.5
		Offside	83.2\%	47.8	14.7
	Cardiff Road (west)	Nearside	87.9\%	39.6	14.7
		Offside	36.6\%	27.0	1.9
Cardiff Road Bus Gate	Cardiff Road (east)		29.7\%	2.1	4.8
	Cardiff Road (west)		147.6\%	675.6	155.1
	Bus Gate		2.2\%	15.3	0.3
Overall PRC (\%)					-64.0\%
Overall Delay (seconds)					182.09
Cycle Time (seconds)					96

Table 6 shows the results of the existing layout with 2024 AM peak traffic flows.
The impact of the 2024 AM peak flows on the existing layout is to change the PRC from -44.8% to -64.0%. The additional traffic has resulted in a worsening of the operation for all the lanes of the model. With the 2024 flows two lanes are now over capacity, these being the Cardiff Road (west) at the bus gate and the Redlands road (nearside) lane.

Some of the queues on the lanes are excessive for the queue length and on occasions these queues could affect the operation of the downstream junction.

Table 7: Existing Layout with 2024 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	85.0\%	101.4	8.2
		Offside	82.9\%	61.8	15.5
	Barry Road	Nearside	86.0\%	29.9	30.5
		Offside	75.1\%	38.8	4.9
	Cardiff Road	Nearside	12.5\%	1.1	0.1
		Offside	67.3\%	7.4	12.8
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	52.3\%	3.1	3.0
		Middle	51.3\%	10.5	8.8
		Offside	27.5	13.1	2.7
	Redlands Road	Nearside	76.1	63.4	10.5
		Offside	79.3\%	64.6	12.2
	Cardiff Road (west)	Nearside	84.1\%	45.2	19.7
		Offside	57.5\%	70.7	3.1
Cardiff Road Bus Gate	Cardiff Road (east)		46.6\%	3.9	17.2
	Cardiff Road (west)		70.2\%	8.8	9.6
	Bus Gate		13.9\%	66.5	0.7
Overall PRC (\%)					4.6\%
Overall Delay (seconds)					53.05
Cycle Time (seconds)					120

Table 7 shows the results of the existing layout with 2024 PM peak traffic flows.
The impact of the 2024 PM peak flows on the existing layout is the operation of the junction worsens as the PRC has decreased from 13.7% to 4.6%. This indicates that the junction is close to capacity.

As with the 2019 PM peak, the 2024 PM peak sees three of the lanes occasionally having queues longer than the length of these lanes.

3.1.2 Option 4

The Option 4 layout has been tested with the 2014, 2019 and 2024 traffic counts to allow a comparison of the operation of this junction with the existing and Option 4 layouts.

Table 8: Option 4 with 2014 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	45.4\%	65.5	2.0
		Offside	49.2\%	38.0	6.0
	Barry Road	Nearside	65.9\%	22.0	13.8
		Offside	53.2\%	43.1	2.2
	Cardiff Road	Nearside	30.1\%	1.7	0.2
		Offside	74.8\%	12.7	15.0
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	33.3\%	3.4	18
		Offside	69.3\%	24.6	10.9
	Redlands Road	Nearside	92.0\%	72.3	15.9
		Offside	84.8\%	54.6	13.6
	Cardiff Road (west)	Nearside	24.4\%	40.7	3.1
		Offside	92.3\%	54.2	16.1
Cardiff Road Bus Gate	Cardiff Road (east)		26.2\%	1.2	0.2
	Cardiff Road (west)		116.4\%	326.1	74.6
	Bus Gate		2.4\%	18.3	0.3
Overall PRC (\%)					-29.4\%
Overall Delay (seconds)					102.65
Cycle Time (seconds)					96

Table 8 shows the results of the Option 4 layout with 2014 AM peak traffic flows.
The results of the Option 4 Layout with the 2014 AM peak traffic flows shows that overall the performance of the junction has improved as the PRC has changed from -44.8% to -29.4% and the overall delay has decreased from 124.2 seconds to 102.65 seconds.

The main change has been the reduction of Cardiff Road (east) at the Cardiff Road/Redlands Road junction from three lanes to two lanes. The impact of this has been to increase the degree of saturation for these lanes on Cardiff Road (east), but they are still operating within capacity. Instead the Cardiff Road (west) offside lane and the Redlands Road (nearside) lane are over capacity.

Looking at individual lanes it can be seen that layout has had an impact on the Cardiff Road (west) lane at the bus gate as the degree of saturation has decreased from 130.3% to 116.4%, as has the average delay and mean max queue.

Table 9: Option 4 Layout with 2014 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	94.3\%	152.8	9.5
		Offside	81.6\%	63.9	13.8
	Barry Road	Nearside	93.7\%	44.5	38.6
		Offside	19.0\%	28.9	0.9
	Cardiff Road	Nearside	13.4\%	1.4	0.1
		Offside	62.4\%	6.2	10.5
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	49.2\%	4.6	4.0
		Offside	74.8\%	20.4	16.4
	Redlands Road	Nearside	73.3\%	63.8	9.3
		Offside	76.2\%	64.4	10.7
	Cardiff Road (west)	Nearside	11.3\%	26.3	1.9
		Offside	73.4\%	37.0	16.7
Cardiff Road Bus Gate	Cardiff Road (east)		41.3\%	1.5	0.5
	Cardiff Road (west)		70.5\%	14.2	12.2
	Bus Gate		6.0\%	47.0	0.6
Overall PRC (\%)					-4.8\%
Overall Delay (seconds)					53.06
Cycle Time (seconds)					120

Table 9 shows the results of the Option 4 layout with 2014 PM peak traffic flows.
From this it can be seen that the impact of this option has been negative with the PRC decreasing from 20.1% to -4.8%, thus indicating that the junction is over capacity in the PM peak.

The results show that for Penlan Road (nearside) and Barry Road (offside) the degree of saturation for these lanes has increased to greater than 90%, whereas previously these were at approximately 70%.

Table 10: Option 4 Layout with 2019 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
	Penlan Road	Nearside	48.3%	66.8	2.2
	Barry Road	Offside	52.2%	38.7	6.4
		69.8%	23.2	15.2	
	Offside	59.6%	48	2.5	

	Cardiff Road	Nearside	31.4\%	1.7	0.2
		Offside	77.2\%	14.5	16.4
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	35.3\%	3.5	1.9
		Offside	76.0\%	30.4	11.9
	Redlands Road	Nearside	93.9\%	77.5	17.6
		Offside	86.5\%	55.7	14.7
	Cardiff Road (west)	Nearside	25.4\%	36.4	3.1
		Offside	96.1\%	71.7	7.1
Cardiff Road Bus Gate	Cardiff Road (east)		27.8\%	1.2	0.2
	Cardiff Road (west)		123.4\%	407.3	71.3
	Bus Gate		2.4\%	18.36	0.0
Overall PRC (\%)					-37.1\%
Overall Delay (seconds)					129.35
Cycle Time (seconds)					96

Table 10 shows the results for Option 4 with the 2019 AM peak traffic flows. From this it can be seen that in comparison to the existing layout and 2019 AM peak traffic flows the junction operation has improved as the PRC has changed from -53.4% to -37.1% and that delay has decreased from 150.09 to 129.35.

In comparison to Option 4 with the 2014 AM peak traffic flows the operation of the junction has worsened as the PRC has changed from -29.4% to -37.1%.

As with the 2014 AM peak flows two links are over capacity with degrees of saturation of more than 90% and both of these being lanes on the Cardiff Road/Redlands Road junction that has seen the greatest change and reduction in capacity.

Table 11: Option 42019 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	99.7\%	191.0	6.3
		Offside	86.4\%	70.6	15.5
	Barry Road	Nearside	99.2\%	71.9	51.3
		Offside	22.4\%	31.6	1.0
	Cardiff Road	Nearside	14.2\%	1.8	0.3
		Offside	66.0\%	6.7	11.5
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	52.1\%	5.1	5.0
		Offside	79.1\%	22.3	17.3
	Redlands Road	Nearside	77.6\%	67.5	10.2
		Offside	80.7\%	68.9	11.8
	Cardiff Road (west)	Nearside	11.9\%	23.6	1.9
		Offside	77.6\%	39.5	18.5
Cardiff Road Bus Gate	Cardiff Road (east)		43.8\%	1.6	0.5
	Cardiff Road (west)		73.0\%	14.1	13.0
	Bus Gate		6.6\%	49.3	0.6
Overall PRC (\%)					-10.8\%
Overall Delay (seconds)					68.88
Cycle Time (seconds)					120

Table 11 shows the results of the Option 4 layout with 2019 PM peak traffic flows.

When the Option 42019 PM peak results are compared with the existing layout, then the junction has seen a decrease in performance as the PRC has decreased from a PRC of 13.7% to -10.8%. This is reinforced by the high degrees of saturation experienced at Penlan Road and Barry road.

The Barry road nearside lane shows a queue length of 51.3 PCUs, which is equal to 295 m . This excessive queue is a result of changes in the lane designation for Barry Road at the junction of Barry road/Penlan Road as straight ahead is only possible from the nearside lane now rather than from both lanes as is the case with the existing layout. This results in the high degree of saturation and long queue.

Table 12: Option 4 with 2024 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	51.2\%	68.3	2.3
		Offside	55.7\%	39.6	6.9
	Barry Road	Nearside	74.6\%	25.0	17.1
		Offside	70.4\%	61.6	3.0
	Cardiff Road	Nearside	33.0\%	1.8	0.3
		Offside	80.1\%	15.4	17.6
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	37.7\%	3.6	2.1
		Offside	81.2\%	34.4	13.1
	Redlands Road	Nearside	100.2\%	118.0	24.6
		Offside	92.5\%	69.2	17.8
	Cardiff Road (west)	Nearside	25.4\%	36.4	3.1
		Offside	96.0\%	71.4	18.3
Cardiff Road Bus Gate	Cardiff Road (east)		29.7\%	1.3	0.2
	Cardiff Road (west)		131.9\%	521.2	126.0
	Bus Gate		2.4\%	18.3	0.3
Overall PRC (\%)					-46.6\%
Overall Delay (seconds)					171.05
Cycle Time (seconds)					96

Table 12 shows the results of Option 4 with 2024 AM peak traffic flows.
When comparing this to the existing layout the Option 4 layout is an improvement as the PRC has changed from -64.0% to -46.6%. This result shows that the Option 4 layout only operates marginally worse with the 2024 AM peak flows than the existing layout with 2014 traffic flows does.

The modelling shows that both lanes on Redlands Road are now operating over capacity and that Cardiff Road (west) offside lane is operating over capacity at the same junction.

Cardiff Road (west) at the bus gate operates a lower degree of saturation than it does with the existing layout with a degree of saturation of 131.9% and a queue of 126 PCUs, or approximately 725 m .

Table 13: Option 4 with 2024 PM Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	106.3\%	262.7	16.0
		Offside	91.8\%	83.7	18.2
	Barry Road	Nearside	105.6\%	51.3	80.9
		Offside	27.5\%	35.3	1.1
	Cardiff Road	Nearside	15.1\%	1.6	0.2
		Offside	70.2\%	7.8	12.7
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	53.5\%	5.2	5.2
		Offside	82.1\%	25.0	18.9
	Redlands Road	Nearside	79.2\%	67.7	10.9
		Offside	82.5\%	69.6	12.6
	Cardiff Road (west)	Nearside	12.9\%	26.1	2.1
		Offside	84.4\%	49.4	20.1
Cardiff Road Bus Gate	Cardiff Road (east)		44.9\%	1.7	0.5
	Cardiff Road (west)		70.9\%	9.4	10.2
	Bus Gate		12.5\%	63.9	0.7
Overall PRC (\%)					-18.1\%
Overall Delay (seconds)					107.57
Cycle Time (seconds)					120

Table 13 shows the results of the Option 4 layout with 2024 PM peak traffic flows.

The results show that with the Option 4 layout the junction has seen a worsening in the operation of the junction as the PRC has decreased from 4.6% to -18.1% with the Option 4 layout,. The PRC has also decreased in comparison to the 2019 PM peak flows.

With 2024 PM peak traffic flows both lanes on Penlan Road and Barry Road (nearside) are now operating over capacity with degrees of saturation greater than 90%. The queue for Barry road (nearside) has increased to approximately 465 m .

Conclusion

The results from the modelling show that Option 4 results in an improvement in the operation of the junctions in the AM peak. But, in order to improve the AM peak results capacity of the PM peak flows is sacrificed and this results in the junctions operating over capacity in the PM peak.

For both the AM and PM peaks there are lanes that are over capacity for all scenarios but previously operated within capacity with the existing layout. This change in degree of saturation is due to the changes to the layout of the junction
which have changed capacity of certain movements and tried to improve pedestrian movements.

In the AM peak the additional lanes that operate over capacity are Redlands Road (nearside) and Cardiff Road (west, Cardiff Road/Redlands Road) offside lane.
These lanes both operate over capacity as a result of the addition of the pedestrian crossing on Cardiff Road (east). This results in less green time being available for the traffic stages in order to find the time for the pedestrian stage to run.

In the PM peak Penlan Road (nearside) lane is over capacity due to the reduction in green time that this lane runs for, this is due to the addition of a pedestrian crossing on Cardiff Road and the reduction in green time available for traffic.

In the PM peak Barry Road (nearside) is over capacity and this is as a result of changes to the lane configuration on Barry Road at this junction. In the existing layout those travelling straight on can use both lanes, but in Option 5 only the nearside lane can be used for those travelling straight on. This change to the lane configuration is not an issue in the AM peak as only 662 vehicles wish to travel straight on, but in the PM peak this increases to 1055 and becomes an issue.

3.1.3 Option 5

Table 14: Option 5 Layout with 2014 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	45.4\%	65.5	2.0
		Offside	49.2\%	38.0	6.0
	Barry Road	Nearside	68.2\%	22.9	14.1
		Offside	31.3\%	24.3	1.9
	Cardiff Road	Nearside	96.7\%	56.8	25.2
		Offside	90.7\%	37.8	21.3
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	33.3\%	3.4	1.8
		Offside	65.0\%	21.1	10.3
	Redlands Road	Nearside	99.7\%	119.6	21.6
		Offside	91.9\%	72.6	16.0
	Cardiff Road (west)	Nearside	57.6\%	26.0	8.0
		Offside	51.1\%	2.7	4.9
Cardiff Road Bus Gate	Cardiff Road (east)		26.2\%	1.2	0.2
	Cardiff Road (west)		116.4\%	322.7	72.4
	Bus Gate		2.4\%	18.3	0.3
Overall PRC (\%)					-29.4\%
Overall Delay (seconds)					117.85
Cycle Time (seconds)					96

Table 14 shows the results for the Option 5 layout with 2014 AM peak traffic flows.

The results from the modelling show that Option 5 results in a decrease in the PRC in comparison to the existing layout model, the PRC has decreased from -44.8% to -29.4%, but the PRC from Option 5 is the same as that for Option 4., although Option 4 shows a lower overall delay of 102.65 seconds in comparison to 117.85 seconds for Option 5 .

The results show that both lanes on Redlands Road and both lanes on Cardiff Road at the Barry Road/Penlan Road junction are over capacity with degrees of saturation greater than 90%. Cardiff Road (west) at the bus gate sees a reduction in its degree of saturation from 130.3% to 116.4% for Option 5, which is the same as that for Option 4, the delay and queue are similar for Option 4 and Option 5.

The remaining lanes all have degrees of saturation less than 90%, although some of the lanes have queues that are in excess of their lengths and thus occasionally causing queues to reach the downstream junction.

Table 15: Option 5 Layout with 2014 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	94.3\%	152.8	9.5
		Offside	81.6\%	63.9	13.8
	Barry Road	Nearside	97.0\%	17.0	43.7
		Offside	7.9\%	14.8	0.8
	Cardiff Road	Nearside	82.0\%	17.9	8.9
		Offside	29.5\%	18.5	8.9
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	49.2\%	4.8	4.4
		Offside	73.5\%	19.3	14.8
	Redlands Road	Nearside	85.4\%	80.1	11.8
		Offside	71.4\%	62.2	9.4
	Cardiff Road (west)	Nearside	73.5\%	37.0	13.8
		Offside	58.5\%	63.7	2.7
Cardiff Road Bus Gate	Cardiff Road (east)		41.3\%	1.5	0.4
	Cardiff Road (west)		65.5\%	9.6	9.3
	Bus Gate		9.0\%	56.2	0.6
Overall PRC (\%)					-7.7\%
Overall Delay (seconds)					61.55
Cycle Time (seconds)					120

Table 15 shows the results for the Option 5 layout with 2014 PM peak traffic flows.

From this it can be seen that overall the junction is performing over capacity with a PRC of -7.7% compared to a PRC of 20.1% for the existing layout (this operates within capacity). When compared with the Option 4 layout the Option 5 layout has a PRC value of -7.7% compared to -4.8% for the Option 4 layout.

The modelling shows that Penlan Road nearside and Barry Road nearside lanes are both operating over capacity with degree of saturation greater than 90%.

Table 16: Option 5 Layout with 2019 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	48.3\%	66.8	0.5
		Offside	52.2\%	38.7	0.5
	Barry Road	Nearside	72.3\%	24.3	1.3
		Offside	33.3\%	24.9	0.2
	Cardiff Road	Nearside	97.8\%	63.8	26.8
		Offside	93.4\%	45.2	23.3
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	35.3\%	3.5	0.3
		Offside	68.9\%	22.0	1.1
	Redlands Road	Nearside	105.7\%	188.3	18.6
		Offside	97.3\%	98.0	8.1
	Cardiff Road (west)	Nearside	58.9\%	26.4	0.7
		Offside	49.8\%	22.7	0.5
Cardiff Road Bus Gate	Cardiff Road (east)		27.6\%	1.2	0.2
	Cardiff Road (west)		123.4\%	82.4	71.3
	Bus Gate		2.4\%	18.3	0.0
Overall PRC (\%)					-37.1\%
Overall Delay (seconds)					156.63
Cycle Time (seconds)					96

Table 16 shows the results for the Option 5 layout with 2019 AM peak traffic flows.

From this it can be seen that in comparison with the existing layout, Option 5 operates at a PRC of -37.1% rather than -53.4%. This shows that this design is not as over capacity as the existing layout is. The Option 4 layout operates at a PRC of -37.1% also, but the overall delay is less than that of Option 5.

As with the 2014 flows, Redlands Road, Cardiff Road (Barry Road/Penland Road junction) and Cardiff road (west) at the bus gate all operated over capacity with degrees of saturation of more than 90%. The Cardiff Road arm also has queues that are in excess of their lengths and thus on occasion the queues could extend through the Cardiff road/Redlands Road junction.

Table 17: Option 5 Layout with 2019 PM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	99.7\%	191.0	11.8
		Offside	86.4\%	70.6	15.5
	Barry Road	Nearside	102.7\%	112.8	63.7
		Offside	8.5\%	15.1	0.9
	Cardiff Road	Nearside	85.4\%	20.1	10.9
		Offside	32.3\%	18.7	9.8
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	51.7\%	5.4	5.2
		Offside	77.5\%	21.4	15.6
	Redlands Road	Nearside	87.2\%	83.9	12.4
		Offside	78.5\%	68.0	10.9
	Cardiff Road (west)	Nearside	77.7\%	39.6	16.3
		Offside	57.1\%	61.5	2.8
Cardiff Road Bus Gate	Cardiff Road (east)		43.0\%	1.6	0.5
	Cardiff Road (west)		67.9\%	9.4	9.7
	Bus Gate		10.4\%	59.6	0.7
Overall PRC (\%)					-14.1\%
Overall Delay (seconds)					86.53
Cycle Time (seconds)					120

Table 17 shows the results for the Option 5 layout with 2019 PM peak traffic flows.

From the results it is seen that performance of the junction overall is lower than the existing layout as Option 5 results in a PRC of $\mathbf{- 1 4 . 1 \%}$ compared to 13.7% for the existing layout. In comparison to Option 4, Option 5 operates at a PRC of -14.1% compared to -10.8% for Option 4.

The results show that Penlan Road (nearside) and Barry Road (nearside) all operate over capacity with degrees of saturation greater than 90%. Penlan Road (offside), Cardiff Road (nearside) and Redlands Road (nearside) are all operating close to capacity with degrees of saturation greater than 85%.

The modelling shows that excessive queue lengths occur on Cardiff road (Penlan Road/Barry Road junction), Cardiff Road (east, Cardiff Road/Redlands Road junction) and Cardiff Road (west, Cardiff Road/Redlands Road junction) and that all of these could affect the operation of junctions downstream.

Table 18: Option 5 Layout with 2024 AM Peak Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	51.2\%	68.3	2.3
		Offside	55.7\%	39.6	6.9
	Barry Road	Nearside	77.2\%	26.4	17.5
		Offside	35.5\%	25.3	2.1
	Cardiff Road	Nearside	98.5\%	68.1	27.8
		Offside	94.6\%	49.5	24.4
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	37.7\%	3.7	2.2
		Offside	73.6\%	23.6	12.3
	Redlands Road	Nearside	112.8\%	290.7	47.5
		Offside	104.0\%	166.4	30.9
	Cardiff Road (west)	Nearside	59.8\%	26.7	8.4
		Offside	50.6\%	22.8	4.7
Cardiff Road Bus Gate	Cardiff Road (east)		29.1\%	1.3	0.3
	Cardiff Road (west)		131.9\%	516.6	121.9
	Bus Gate		2.4\%	18.3	0.3
Overall PRC (\%)					-46.6\%
Overall Delay (seconds)					214.98
Cycle Time (seconds)					96

Table 18 shows the results for the Option 5 layout with 2024 AM peak traffic flows.

When comparing Option 5 with the existing layout Option 5 has a PRC of 46.6% compared to that of -64.0% for the existing layout. The PRC obtained for Option 5 is only slightly higher than obtained for the existing layout with 2014 traffic flows.

The modelling results show that Redlands Road and Cardiff Road (Barry Road/Penlan Road) and Cardiff road (west) at the bus gate are all over capacity with degrees of saturation greater than 90%. The remaining lanes all operate within capacity, although some lanes have excessive queues on. These lanes are Cardiff Road (Barry road/Penlan Road junction), Cardiff road (east) offside lane and Cardiff Road (east) nearside lane at the Cardiff Road/Redlands Road junction.

Table 19: Option 5 Layout with 2024 PM Traffic Flows

Junction	Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Road / Penlan Road	Penlan Road	Nearside	106.3\%	262.5	16.0
		Offside	91.8\%	83.7	18.2
	Barry Road	Nearside	109.3\%	212.6	98.9
		Offside	9.2\%	15.6	1.0
	Cardiff Road	Nearside	89.7\%	24.9	14.2
		Offside	35.4\%	18.9	11.1
Cardiff Road / Redlands Road	Cardiff Road (east)	Nearside	52.8\%	5.4	5.2
		Offside	78.5\%	22.1	16.3
	Redlands Road	Nearside	89.6\%	90.2	13.3
		Offside	86.4\%	79.3	13.1
	Cardiff Road (west)	Nearside	82.7\%	43.2	19.1
		Offside	60.6\%	63.8	3.0
Cardiff Road Bus Gate	Cardiff Road (east)		43.8\%	1.6	0.5
	Cardiff Road (west)		71.6\%	10.0	10.7
	Bus Gate		11.4\%	61.6	0.7
Overall PRC (\%)					-21.4\%
Overall Delay (seconds)					133.32
Cycle Time (seconds)					120

Table 19 shows the results for the Option 5 layout with 2024 PM peak traffic flows.

From this it can be seen that the Option 5 layout has resulted in a decrease in performance from 4.6% to -21.4%. If this is compared to that for Option 4 then Option 5 operates at a value of -21.4% compared to -18.1% for Option 4.

The results show that Penlan Road and Barry Road nearside lane are operating over capacity with degrees of saturation greater than 90%. Cardiff Road nearside (Barry Road/Penlan Road) and Redlands Road, nearside, are both operating at capacity with degrees of saturation of 90%.

The modelling shows that Cardiff Road (Barry Road/Penlan Road junction), Cardiff road (east, Cardiff Road/Redlands Road) offside lane Cardiff Road (west, Cardiff Road/Redlands Road junction) nearside lane all have excessive queues on.

Conclusion

The results from the modelling show that Option 5 results in an improvement in the operation of the junction in the AM peak as the PRC improves, albeit still remains negative indicating the junction is over capacity. For the PM peak the PRC decreases and becomes negative, as opposed to positive for the existing
layout. This decrease in PRC for the PM peak means that the junction operates within capacity for the existing layout, but over capacity for layout 5.

For both the AM and PM peaks there are lanes that are over capacity for all scenarios, but previously operated within capacity with the existing layout. This change in degree of saturation is due to the changes to the layout of the junction which have changed capacity of certain movements and tried to improve pedestrian movements.

In the AM peak the Cardiff Road lanes at the Barry Road/Penlan Road are over capacity. This is due to the removal of the left turn filter and give way that are present in the existing and Option 4 and the introduction of a pedestrian crossing here. Both of these result in a decrease in green time for and thus they now both operate over capacity.

In the AM peak both Redlands Road lanes are over capacity. This is due to the introduction of a pedestrian crossing across Cardiff Road at this junction. This pedestrian crossing has resulted in a decrease in the amount of green time available and Redlands Road has seen the greatest reduction in green time.
In the PM peak Barry Road (nearside) is over capacity and this is as a result in changes to the lane configuration on Barry Road at this junction. In the existing layout those travelling straight on can use both lanes, but in Option 5 only the nearside lane can be used for those travelling straight on. This change to the lane configuration is not an issue in the AM peak as only 662 vehicles wish to travel straight on, but in the PM peak this increases to 1055 and becomes an issue.

For Penlan Road nearside lane the issue is the reduction in green time available to it as a result of the additional pedestrian crossing on Cardiff Road.

3.2 Biglis Junction

3.2.1 Existing Layout

The existing layout have been assessed using Arcady/Junctions 8.
Table 20: Existing Layout with 2014 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	6.81	28.76	D
Cardiff Road (east)	2.36	12.41	B
Sully Moors Road	3.19	16.13	C
Cardiff Road (west)	10.61	30.20	D
Junction LoS			

The results of the existing layout with 2014 AM Peak traffic flows can be seen in Table 20. From this it can be seen that the junction currently operates within capacity with an overall Level of Service (Los) of C.

The junction queues have been compared with those measured onsite when the vehicle counts were undertaken and the fit between the queues observed onsite and those modelled are close enough for the model to present reasonably accurate results.

Table 21: Existing Layout with 2014 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	1.35	7.26	A
Cardiff Road (east)	3.62	14.20	B
Sully Moors Road	5.93	29.06	D
Cardiff Road (west)	8.11	24.40	C
Junction LoS	C$~$		

The results for the existing layout with 2014 PM Peak traffic flows can be seen in Table 21. This shows that the junction operates at a LoS C which means that the junction operates within capacity for the PM peak.

As with the AM peak, the queues from the model have been compared with those measured onsite and the fit between these is close enough to present reasonably accurate results.

Table 22: Existing Layout with 2019 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	15.42	57.18	F
Cardiff Road (east)	3.43	16.80	C
Sully Moors Road	5.00	23.54	C
Cardiff Road (west)	26.36	63.65	F
Junction LoS	F		

As can be seen from Table 22 the existing layout with the 2019 AM peak flows results in a junction LoS F. This indicates that the junction operates over capacity with the 2019 AM peak flows, whereas with the 2014 flows the junction operated at a LoS C.

Barry Docks Link Road and Cardiff Road (west) both see queue lengths and delays doubling as a result of the increase in traffic between 2014 and 2019.

Table 23: Existing Layout with 2019 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	1.65	8.83	A
Cardiff Road (east)	5.41	20.48	C
Sully Moors Road	13.84	61.02	F
Cardiff Road (west)	17.58	47.60	E
Junction LoS	E		

Table 23 shows the results for the existing layout with 2019 PM peak traffic flows. From this it can be seen that with the 2019 PM peak flows the junction operates at a LoS E, compared to LoS C with 2014 PM peak flows. This LoS indicates that the junction no longer operates within capacity.

Sully Moors Road and Cardiff Road (west) both see their queue lengths and delay double as a result of the additional traffic in 2019. Barry Docks Link Road and Cardiff Road (east) both have much smaller increases in queue lengths and delay.

Table 24: Existing Layout with 2024 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	42.66	131.94	F
Cardiff Road (east)	5.66	25.12	D
Sully Moors Road	10.86	45.65	E
Cardiff Road (west)	74.64	145.72	F
Junction LoS	F		

Table 24 shows the results for the existing layout with 2024 AM peak traffic flows. When the results are compared with 2014 the LoS has changed to F , indicating the junction is operating over capacity. All of the arms have a LoS that is deemed to indicate that a junction is at or over capacity.

Barry Docks Link Road and Cardiff Road (west) have seen large increases in queues and delays as a result of the increase in traffic between 2014 and 2024.

Table 25: Existing Layout with 2024 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	2.16	10.94	B
Cardiff Road (east)	10.85	38.78	E
Sully Moors Road	49.46	178.03	F
Cardiff Road (west)	47.28	100.46	F
Residual Network Capacity			

Table 25 shows the results of the existing layout with 2024 PM peak traffic flows. From this it can be seen that the LoS has changed from C to an F. A LoS F indicates that a junction is over capacity. This is confirmed by the long queues and high delay times experienced on Sully Moors Road and Cardiff Road (west).

3.2.2 Option B (Improved Roundabout)

Option B sees the flares on Barry Docks Link Road, Cardiff road (east) and Sully Moors Road being lengthened to increase the capacity of these arms. On Cardiff Road (west) the lane designations are changed so that the nearside lane becomes a left turn only lane.

Table 26: Option B with 2014 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	2.98	12.22	B
Cardiff Road (east)	1.71	8.87	A
Sully Moors Road	2.15	10.62	B
Cardiff Road (west)	52.04	123.18	F
Junction LoS			

Table 26 shows the results for the Option B layout with 2014 AM peak traffic flows. The modelling shows that the junction will now operate at a LoS F with
these changes, compared to a LoS C with the existing layout. This indicates that this junction is now over capacity with these changes.

The changes to Barry Links Dock Road, Cardiff Road (east) and Sully Moors Road all results in the queue and delay decreasing as a result of the changes to these arms.

The changes to the lane designation for Cardiff Road (west) result in the queue and delay increasing on this arm. The queue increases from 11 PCU's with the existing layout to 52 PCU's with the Option B layout.

Table 27: Option B with 2014 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	0.90	5.09	A
Cardiff Road (east)	2.52	9.94	A
Sully Moors Road	3.33	16.58	C
Cardiff Road (west)	9.67	29.06	D
Junction LoS			

Table 27 shows the results for the Option B layout with the 2014 PM peak traffic flows. The results show that with the changes to the junction it still operates at a LoS C so is operating within capacity.

The changes to the layout of the junction result in a decrease in the queue and delay for Barry Docks Road, Cardiff Road (east) and Sully Moors Road, but for Cardiff Road (west) the changes result in an increase in queue and delay. The resulting increase in delay on Cardiff Road (west) results in the LoS changing from a C to a D.

Table 28: Option B with 2019 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	3.80	15.51	C
Cardiff Road (east)	2.19	10.85	B
Sully Moors Road	2.98	13.94	B
Cardiff Road (west)	109.96	227.73	F
Junction LoS			

Table 28 shows the results for the Option B layout with the 2019 AM peak traffic flows. The results show that the junction still operates at a LoS F, even with the changes. Considering that Barry Docks Link Road, Cardiff Road (east) and Sully Moors Road all have a LoS B/C, then the delay on Cardiff Road (west) is sufficiently long to result in the whole junction operating at a LoS F.

Barry Docks Link road, Cardiff Road (east) and Sully Moors Road all see decreases in queues and delays as a result of the changes, whereas Cardiff Road (west) sees a 320% increase in queue length as a result of the changes to that arm.

Table 29: Option B with 2019 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	1.13	5.89	A
Cardiff Road (east)	3.49	13.14	B
Sully Moors Road	5.71	27.02	D
Cardiff Road (west)	24.08	61.53	F
Junction LoS	D		

Table 29 shows the results for the Option B layout with 2019 PM Peak traffic flows. The results of the modelling show that with these changes the junction improves to operate at a LoS D, thus the junction now operates at capacity. This change in LoS is due to the reduction in the queue and delay on Sully Moors Road.

Barry Docks Link Road, Cardiff Road (east) and Sully Moors Road see a decrease in queue length and delay as a result the changes, whereas Cardiff Road (west) sees queues and delay doubling as a result of the changes.

Table 30: Option B with 2024 AM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	5.54	21.05	C
Cardiff Road (east)	3.03	14.14	B
Sully Moors Road	4.62	20.97	C
Cardiff Road (west)	192.66	392.32	F
Junction LoS	F		

Table 30 shows the results of Option B with the 2024 AM peak traffic flows. From this it can be seen that the LoS remains F with the changes to the junction.

Barry Dock Links Road, Cardiff Road (east) and Sully Moors Road the changes result in a decrease in the queue and delays experienced, whereas Cardiff Road (west) sees a 160% increase in the queue experienced.
Table 31: Option B with 2024 PM Peak Traffic Flows

	Queue (PCU)	Delay (seconds)	Level of Service
Barry Docks Link Road	1.35	6.80	A
Cardiff Road (east)	5.20	18.66	C
Sully Moors Road	13.50	57.51	F
Cardiff Road (west)	65.90	137.50	F
Junction LoS			

Table 31 shows the results of Option B with the 2024 PM peak traffic flows. The modelling shows that with these changes the junction still operates at a LoS F.

Barry Docks Link Road, Cardiff Road (east) and Sully Moors Road all see a decrease in queue and delays as a result of the changes, whereas Cardiff Road (west) sees an increase in queue and delay. Although Sully Moors Road sees a decrease in delay in comparison to the existing layout it still operates at LoS F.

Conclusion

The modelling for Biglis shows that with the existing layout the junction operates at a LoS C for both the AM and PM peaks thus indicating that the junction operates within capacity and that queues and delays are not that excessive. With the 2019 and 2024 traffic flows the junction operates at a LoS E/F indicating that with these flows the junction is no longer operating within capacity as queues and delays on some arms have reached an excessive point.

Option B sees increases in flare lengths for Barry Docks road, Cardiff Road (east) and Sully Moors Road and Cardiff Road (west) has a change in lane designations so that the nearside lane is left turns only. This results in decreases in the queues and delays for Barry Docks Link Road, Cardiff Road (east) and Sully Moors Road, but Cardiff Road (west) sees queues and delays doubling as a result of changes to the lane designations.

This increase is due to the number of vehicles undertaking the left turn in comparison to the rest of the traffic on that arm. The left turners only account for 20% of traffic in the AM peak and only 30% in the PM peak. This results in large numbers of vehicles using the offside. This is then exasperated by the changes to the other arms that result in greater numbers of vehicles passing over the give way line and circulating the roundabout.

Retaining the existing lane designations on the Cardiff Road (west) arm would improve the operation of the Option B improvement significantly, however this arm would still be over capacity in the future scenarios considered.

3.2.3 Option 1 (Traffic Signals)

Option 1 for Biglis sees this junction converted to operate as a four arm signalised junction.
Table 32: Option 1 Layout with 2014 AM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Docks Road	Nearside	103.0\%	150.1	38.0
	Offside	96.1\%	163.2	10.3
Cardiff Road (east)	Nearside	47.4\%	24.7	6.2
	Offside	104.8\%	248.0	14.6
Sully Moors Road	Nearside	105.6\%	192.8	40.7
	Offside	74.2\%	119..9	3.5
Cardiff Road (west)	Nearside	35.4\%	31.1	6.1
	Offside	105.4\%	169.5	59.6
Overall PRC (\%)				-17.3\%
Overall Delay (seconds)				129.83
Cycle Time (seconds)				120

The results for Option 1 with 2014 AM peak traffic flows can be seen in Table 32. Form this table it can be seen that overall the junction is operating over capacity with a PRC of -17.3%.
The Barry Docks Road arm, Cardiff road (east) offside and Sully Moors Road nearside lane are all operating over capacity with degrees of saturation greater than 90%.

Table 33: Option 1 Layout with 2014 PM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Docks Road	Nearside	85.9\%	61.1	13.3
	Offside	49.0\%	72.1	2.6
Cardiff Road (east)	Nearside	57.8\%	24.8	8.6
	Offside	84.3\%	82.3	10.1
Sully Moors Road	Nearside	111.8\%	285.0	55.7
	Offside	55.0\%	77.9	3.1
Cardiff Road (west)	Nearside	48.3\%	32.2	9.1
	Offside	114.7\%	296.5	68.6
Overall PRC (\%)				-27.5\%
Overall Delay (seconds)				132.91
Cycle Time (seconds)				120

The results for the 2014 PM peak can be seen in Table 33. From this it can be seen that the junction is over capacity in the PM peak as the PRC is -27.5%.

The results show that like the Sully Moors Road nearside lane and Cardiff Road (west) offside lane are over capacity with degrees of saturation greater than 90%. These two lanes also have high average delay times and queues.

Table 34: Option 1 Layout with 2019 AM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Docks Road	Nearside	108.3\%	224.1	54.9
	Offside	102.6\%	220.2	13.7
Cardiff Road (east)	Nearside	50.4\%	25.0	6.6
	Offside	111.1\%	320.9	19.0
Sully Moors Road	Nearside	111.4\%	277.4	58.2
	Offside	79.8\%	133.3	4.1
Cardiff Road (west)	Nearside	37.6\%	31.5	6.5
	Offside	111.7\%	262.3	86.7
Overall PRC (\%)				-24.1\%
Overall Delay (seconds)				198.46
Cycle Time (seconds)				120

The results for the 2019 AM peak traffic flows can be seen in Table 34. The results show that in comparison with the 2014 AM peak flows the PRC has increased from -17.3% to -24.1%.

The model shows that for the 2019 AM peak five lanes are now over capacity with degrees of saturation greater than 90%. The only lanes that are not over
capacity are Cardiff road (east) nearside lane, Sully Moors Road offside lane and the Cardiff Road (west) nearside lane.

Table 35: Option 1 Layout for 2019 PM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)	
Barry Docks Road	Nearside	88.5%	66.3	14.3	
	Offside	56.5%	76.3	3.1	
Cardiff Road (east)	Nearside	59.5%	23.8	9.3	
	Offside	103.8%	201.8	19.2	
Sully Moors Road	Nearside	126.6%	482.5	93.8	
	Offside	69.0%	97.5	3.8	
Cardiff Road (west)	Nearside	49.0%	31.0	9.4	
	Offside	124.1%	415.2	98.1	
Overall PRC (\%)			-40.7%		
Overall Delay (seconds)	2				
Cycle Time (seconds)					

The results for the 2019 PM peak traffic flows can be seen in Table 35.
Comparing the results with those for the 2014 PM peak traffic flows it can be seen that the performance of the junction has decreased as the PRC has changed from -27.5% to -40.7%. This change in PRC is not as drastic as that experienced with the 2019 AM peak flows.

For the 2019 PM peak traffic flows the Cardiff Road (east) offside, Sully Moors Road (nearside) and Cardiff Road (west) offside lanes are over capacity, with the Barry Docks Link Road nearside lane being close to capacity.

Table 36: Option 1 Layout with 2024 AM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	Mean Max Queue (PCUs)
Barry Docks Road	Nearside	115.9\%	336.3	80.0
	Offside	112.4\%	340.4	20.8
Cardiff Road (east)	Nearside	53.0\%	24.8	7.1
	Offside	118.6\%	413.9	25.1
Sully Moors Road	Nearside	122.9\%	433.1	91.9
	Offside	91.7\%	187.1	5.7
Cardiff Road (west)	Nearside	39.2\%	31.1	7.0
	Offside	120.4	350.7	116.5
Overall PRC (\%)				-36.5\%
Overall Delay (seconds)				302.83
Cycle Time (seconds)				120

Table 36 shows the Option 1 layout with the 2024 AM peak traffic flows. Comparing the results for 2024 with 2014 and 2019 it can be seen that the operating of the junction has worsened as the PRC has changed from -17.3% with 2014 flows to -36.5\% with 2024 flows.

For the AM peak 2024 six of the lanes are overcapacity and the remainder are within capacity. The lanes that are within capacity are Cardiff road (east) nearside and Cardiff road (west) nearside lanes.

Table 37: Option 1 Layout with 2024 PM Peak Traffic Flows

Arm	Lane	Degree of Saturation (\%)	Average Delay (seconds / PCU)	$\begin{gathered} \text { Mean Max } \\ \text { Queue (PCUs) } \end{gathered}$
Barry Docks Road	Nearside	90.9\%	71.6	16.6
	Offside	63.0\%	80.6	3.7
Cardiff Road (east)	Nearside	62.5\%	23.8	10.4
	Offside	107.2\%	240.6	23.3
Sully Moors Road	Nearside	148.4\%	712.8	144.7
	Offside	91.3\%	175.0	6.1
Cardiff Road (west)	Nearside	51.2\%	30.8	10.1
	Offside	143.7\%	629.9	152.1
Overall PRC (\%)				-64.8\%
Overall Delay (seconds)				323.40
Cycle Time (seconds)				120

Table 37 shows the 2024 PM peak results for Option 1. Comparing the 2024 PM peak the with 2014 PM peak it can be observed that the operation of the junction
has worsened as the PRC has changed from - 27.5% to -64.8%, which is a doubling of the PRC in the ten year period.

The modelling shows that five of the lanes are operating over capacity and the rest are within capacity. Those lanes within capacity are Barry Docks road offside, Cardiff Road (east) nearside and Cardiff Road (west) nearside.

Those lanes showing high degrees of saturation also exhibit long delays and queues as a result of the high degrees of saturation.

Conclusion

Option 1 sees the junction converted to signal control. For all traffic flows the overall PRC is negative indicating that the junction is over capacity. The results from the Option 1 modelling show that for the Cardiff Road (west) arm the lane designations and resultant lane inbalance ensures that the nearside lane operates within capacity with a degree of saturation less than 55%, whereas the offside lane operates over capacity in all time periods with a degree of saturation in excess of 100%, achieving 140% with the 2024 PM peak traffic flows.

4 Conclusion and Recommendations

4.1 Conclusion

Table 38: Summary of Results for Merrie Harrier Junction

	2014		2019		2024	
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Existing	-44.8%	20.1%	-53.4%	13.7%	-64.0%	4.6%
Option 4	-29.4%	-4.8%	-37.1%	-10.8%	-46.6%	-18.1%
Option 5	-29.4%	-7.7%	-37.1%	-14.1%	-46.6%	-21.4%

Table 38 shows a summary of the PRC's for each option for the Merrie Harrier junction. It can be seen that with the existing layout the junction operates over capacity in the AM peak for all years, but for the PM peak operates within capacity for each year.

With the Option 4 layout the PRC for the AM peak has improved and is less than that of the existing layout, but still negative indicating the junction is still over capacity. For the PM peak Option results in a decrease in the PRC and for each year is now negative indicating the junction is over capacity.

For the Option 5 layout the same pattern is observed in that there is an improvement in the operation of the junction in the AM peak, but at the cost of the operation of the junction in the PM peak. Overall the PM peak operates at a slightly higher PRC than the Option 4 layout.

Table 39: Summary of the Results for Biglis Junction

	2014		2019		2024	
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Existing	C	C	F	E	F	F
Option B	F	C	F	D	F	F
Option 1	-17.3%	-27.5%	-24.1%	-40.7%	-36.5%	-64.8%

Table 39 provides a summary of the results from the modelling of the options for the Biglis junction.

It can be seen that the existing junction operates within capacity with 2014 traffic flows, but when the 2019 and 2024 traffic flows are modelled the LoS increases to E / F showing the junction is over capacity.

For Option B it can be seen that it is only the 2014 PM peak that operates within capacity as all the other scenarios have a LoS E/F indicating they are over capacity. Retaining the existing lane designations on the Cardiff Road (west) arm would improve the operation of the Option B improvement significantly, however this arm would still be over capacity in the future scenarios considered.

Option 1 shows that again the junction is over capacity in all time periods with all traffic flows.

4.2 Recommendations

The following recommendations are made:

- For Merrie Harrier the modelling shows that Option 4 is the preferred option to take forwards as this results in an improvement in the operation of the junction in the AM peak and the corresponding change in the PM peak is not as great as that of Option 5; and
- For Biglis Option B should be taken forward, but the changes to the lane designation on Cardiff Road (west) should be reconsidered to allow a more balanced lane use.

APPENDIX C

From S02-MR-Calcs.xlsx

Paste TRICS DATA in box

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNI Calculation Factor: 1 HHOLDS

Trip Generations based on		500	Units	Trip Gener
Peak Periods	Inbound	Outbound	Total	Peak Period
08:00-09:00	77	185	262	08:00-09:00
17:00-18:00	191	104	295	17:00-18:0才
Daily	1295	1306	2601	Daily

3ES		TOTALS		
Trip	No．		Ave．	Trip
Rate	Days		HHOLDS	Rate
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0.223		12	51	0.287
0.37		12	51	0.523
0.206		12	51	0.382
0.181		12	51	0.339
0.181		12	51	0.378
0.171		12	51	0.36
0.214		12	51	0.418
0.209		12	51	0.421
0.194		12	51	0.475
0.251		12	51	0.59
0.207		12	51	0.589
0.204		12	51	0.439
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
2.611				5.201

TRICS Trip Rates

Peak Period	Inbound	Outbound	Total
08：00－09：0才	0.153	0.37	0.523
17：00－18：00	0.382	0.207	0.589
Daily	2.59	2.611	5.201
Trip Generations bas		500	Units
Peak Period	Inbound	Outbound	Total
08：00－09：0才	77	185	262
17：00－18：0才	191	104	295
Daily	1295	1306	2601

Time Period
Arrivals

$07: 00$	29	Departures
Total		
$08: 00$	69	160
$09: 00$	79	93
$10: 00$	71	81
$11: 00$	89	81
$12: 00$	85	77
$13: 00$	92	96
$14: 00$	95	94
$15: 00$	126	87
$16: 00$	153	113
$17: 00$	172	93
$18: 00$	106	92

Trip Generations bas	50	Units
Peak Period	Inbound	Outbound
08：00－09：00	8	19
Total		
17：00－18：00	19	10
Daily	130	131

APPENDIX D

APPENDIX E

APPENDIX F

Taylor Wimpey

Land adjacent to Swanbridge Road, Sully

Interim Travel Plan

September 2016

Contents

1 INTRODUCTION 3
Background 3
The Development 3
Travel Plan Scope 3
Aim of Travel Plan 3
This Document 4
2 POLICY AND BEST PRACTICE 5
National Policy 5
Planning Policy Wales (Edition 4, February 2011) 5
Technical Advice Note 18 (Transport) 5
Department for Transport Guidance 5
Regional Policy 6
South East Wales Transport Alliance Regional Transport Plan (March 2010) 6
Local Policy 6
The Vale of Glamorgan Unitary Development Plan 6
Vale of Glamorgan Local Development Plan 7
Summary 8
3 PROPOSED RESIDENTIAL DEVELOPMENT9
Development Schedule 9
Location 9
Site Layout 10
Walking 11
Proposed Design 11
Cycling 11
Public Transport 12
Bus 12
Rail 14
Summary 14
4 OBJECTIVES AND BENEFITS 15
Mission Statement 15
Objectives. 15
Benefits 16
5 TARGETS 17
Action Targets 17
Aim Targets. 17
6 TRAVEL PLAN MEASURES 19
Introduction 19
Measures - Development Proposals 19
Travel Pack 19
Personalised Travel Planning. 19
Public Transport 19
Walking and Cycling. 20
7 MONITORING AND REVIEW 21
Monitoring Strategy 21
Reporting 21

Figures

Figure 3.1 - Site Location
Figure 4.3 - Existing Pedestrian Linkages

1 INTRODUCTION

Background

1.1 This Interim Travel Plan Framework (ITP) has been prepared by Vectos on behalf of Taylor Wimpey (the applicants) to support the Transport Assessment, which has been submitted as part of the planning application.
1.2 This ITP has been prepared in accordance with Travel Plan guidance issued by the Department for Transport and will provide the strategy from which the final Travel Plan can be produced. The final Travel Plan will include modal shift targets based on the results of the travel surveys.

The Development

1.3 The proposed development comprises up to 350 residential units. Full details of the proposed development are included in the Transport Assessment.

Travel Plan Scope

1.4 This ITP is a strategy setting out the sustainable travel options and measures for the proposed development at Swanbridge Road, Sully.
1.5 This ITP will form the basis of a full Travel Plan covering the residential development, which will be produced once baseline travel surveys have been completed. These baseline travel surveys will be undertaken within 3 months of meaningful occupation of the residential development.

Aim of Travel Plan

1.6 The main aim of this ITP is to put in place the management tools deemed necessary to enable future residents to make more informed decisions about their travel, which at the same time minimises the adverse impacts of their travel on the environment. This is achieved by setting out a strategy for eliminating the barriers which prevent people from using sustainable modes which in effect can self-manage single-occupancy vehicle use.
1.7 The strategy needs to be long term as changing travel habits takes time and will only occur through a combination of incentives, improved facilities, government initiatives, and changes in individual attitudes.
1.8 This is an evolving ITP and will change with input from Vale of Glamorgan Council (VoG), the applicant, and other key stakeholders as necessary.

This Document

1.9 This ITP has been written as a stand-alone document and contains all the relevant information needed to effectively implement and monitor the full Travel Plan.
1.10 The remainder of the document is as follows:

- Section 3 - Outlines relevant policy and best practice;
- Section 4 - Describes the proposed residential development;
- Section 5 - Sets out the objectives and benefits of the ITP;
- Section 6 - Outlines the targets of the ITP;
- \quad Section 7 - Sets out the management structure of the ITP;
- Section 8 - Sets out the measures that could be implemented to help achieve the objectives and targets of the full Travel Plan; and
- Section 9-Outlines how the monitoring and review programme which will ensure the Travel Plan continues to progress.

2 POLICY AND BEST PRACTICE

National Policy

Planning Policy Wales (Edition 4, February 2011)

2.1 Planning Policy Wales sets out the land use planning policies of the Welsh Government. This is supplemented by a series of Technical Advice Notes. A summary of the transportation and land use policies of the Welsh Government are set out below:

- promote sustainable patterns of development, identifying previously developed land and buildings, and indicating locations for higher density development at hubs and interchanges and close to route corridors where accessibility on foot and by bicycle and public transport is good;
- maintain and improve the vitality, attractiveness and viability of town, district, local and village centres;
- locate development so that it can be well serviced by existing infrastructure.

Technical Advice Note 18 (Transport)

2.2 The Planning Policy Wales Technical Advice Note for Transport (TAN 18), states that sustainable development should be achieved by:

- integration of transport and land use planning;
- integration between different types of transport; and
- integration of transport policy with policies for the environment, education, social justice, health, economic development and wealth creation.

Department for Transport Guidance

2.3 Department for Transport (DfT) guidance in relation to residential travel plans is set out in 'Making Residential Travel Plans Work: Guidelines for New Development'. This document sets out the required design and content of travel plans, and the management, monitoring and review procedures required to ensure a travel plan is effective.

Regional Policy

South East Wales Transport Alliance Regional Transport Plan (March 2010)

2.4 The aim of the South East Wales Transport Alliance (SEWTA) Regional Transport Plan (RTP) is to improve regional transport in South East Wales and help deliver the social, economic and environmental objectives of the Wales Spatial Plan and the Wales Transport Strategy.
2.5 The wider goals of the RTP are:

- develop the economy, through improving connectivity for business and freight, making transport more effective and efficient, providing access to employment, education, shopping and leisure, and by improving transport integration
- promote social inclusion and equality, by providing a transport system that is safe, accessible, and affordable to all sections of the community;
- protect the environment, by minimising transport emissions and consumption of resources and energy, by promoting walking, cycling, quality public transport, modal shift and minimising demand on the transport system; and
- encourage more people to travel 'actively' by walking and cycling and integrating 'active' modes with public transport. The link between car dependency and the health problems created by sedentary lifestyles is now widely accepted and these aims seek to change this.

Local Policy

The Vale of Glamorgan Unitary Development Plan

2.6 The Vale of Glamorgan Adopted UDP 1996-2011 was adopted in April 2005 and constitutes the development plan for the authority. The UDP concentrates on the issues that the Council consider necessary to address in order to protect and enhance the environment of the Vale of Glamorgan whilst providing detailed guidance for future development proposals.
2.7 Policy 7 of the UDP relates to Transport and states:
'Improvements to the transportation network will consist of:
i) Strategic transport schemes within and adjoining the existing urban areas of the waterfront strip of Penarth, Dinas Powys, Barry and Rhoose;
ii) Local schemes necessary for environmental and safety reasons; and
iii) Schemes to encourage travel by cyclists and pedestrians.'
2.8 Policy 8 also states:
'Developments will be favoured in locations which:
i) Are highly accessible by means of travel other than the private car; and
ii) Minimise traffic levels and associated unacceptable environmental effects.'
2.9 The Council's transportation policy objectives for the UDP are:

- 'To ensure that a balance is maintained between the need to facilitate the development of the local economy, environmental concerns and social considerations, in order to create a safe, efficient and equitable transport network for the Vale of Glamorgan;
- To maintain and improve access to employment and services;
- To ensure that developments are accessible by means of travel other than the private car;
- To encourage greater use of public transport, cycling and walking;
- To safeguard road lines and routes / sites of approved transport schemes;
- To improve the safety and convenience of all means of transport; and
- To ensure that adequate parking facilities are provided in accordance with the Council's approved parking guidelines.'

Vale of Glamorgan Local Development Plan

2.10 The Vale of Glamorgan Council is preparing a new Local Development Plan (LDP) which will set out how land within the Vale of Glamorgan is used between 2011 and 2026. When adopted, the LDP will replace the current Adopted UDP.
2.11 The VoGC's Highway Development Control section has prepared an initial consultation response to this land identified as MG25 in the draft LDP. They have indicated that there are
no highway objections to the proposals subject to points relating to access, improvements to existing highway infrastructure and being able to demonstrate that the development will result in nil detriment to the existing traffic situation.

Summary

2.12 The proposed development accords with national, regional and local planning policies, and supports the sustainable objectives of national, regional and local planning policies.

3 PROPOSED RESIDENTIAL DEVELOPMENT

Development Schedule

3.1 The development proposal is for 350 residential dwellings with access provided off Cog Road and Swanbridge Road. Full details of the proposed development are included in the Transport Assessment.

Location

3.2 The site is located on the eastern fringe of Sully to the west of Swanbridge Road. The centre of Sully is approximately 5 km from Penarth town centre and 4 km from the town centre of Barry. Sully has a population of approximately 4,543 and comprises of a mix of local facilities including a primary school, a local convenience store, post office and doctor's surgery.
3.3 The site is bound to the north by Cog Road and to the east by Swanbridge Road, both of which are local 'Distributor Roads'. Existing residential development lies to the west of the development land and to the south is the disused Penarth to Barry Railway Line. Beyond this is further residential development. The site location is shown in Figure 3.1.

Figure 3.1 - Site Location

3.4 The predominant land use to the south and west of the site is residential whilst to the north and east it is agricultural use. The existing land use at the site is agricultural land.

Site Layout

3.5 The site will be developed in line with the principles of Manual for Streets and Manual for Streets 2 (MfS). The site will follow a clear hierarchical approach with respect to site users, with pedestrians and other vulnerable road users are at the top of this hierarchy, and the emphasis on creating a sustainable development which links to the surrounding residential development and existing local facilities with well-connected pedestrian and cycle networks.
3.6 At Cog Road, the major road will be diverted into the site at its north-western corner. In this way, the major route becomes the route into the site, discouraging extensive use of Cog Road for 'rat-running', although Cog Road can still be accessed via a priority junction.
3.7 The VoGC has recently advertised their intention to introduce a 30 mph speed limit on Cog Road from the end of the existing 30 mph section as far as its junction with Sully Road/Lavernock Road.
3.8 On Swanbridge Road, a priority junction is proposed to provide access to the eastern part of the site.
3.9 Both access junctions can be achieved within either the adopted highway or within the land ownership boundary.

The intention of the development will be to link both points of access with a spine road, however this road and subsidiary roads will be designed to ensure traffic speeds are kept below 30 mph , in accordance with MfS.

Walking
3.11 Whilst there are currently limited pedestrian facilities along Cog Road and none along Swanbridge Road there is a comprehensive footpath network adjacent to the western boundary of the site which serves the existing residential areas of Conybeare Road and Arlington Drive.
3.12 Whilst it is not possible for vehicular traffic to travel between Conybeare Road and Arlington Road, pedestrians are able to walk from Cog Road through to South Road using the existing footpath network which in part is segregated from the residential estate roads.
3.13 The existing footpath facilities are shown in the photographs below.

Proposed Design

In order to improve pedestrian linkages with the surrounding areas, a number of points of access for pedestrians and cyclists will be provided /enhanced. This will result in a benefit to existing and proposed residents in this area and will significantly improve the opportunities to walk and cycle for all journey purposes

Cycling

Whilst there are no formal cycle routes within the immediate vicinity of the site, apart from a shared cycleway/footway which is provided between Penarth and Barry following Lavernock Road and South Road, the site is suitably well located to enable cyclists to access this facility
from the existing residential estate roads. The following photographs show the facilities at the junction with Swanbridge Road.

The proposed residential development will be designed in line with principles of Manual for Streets and Manual for Streets 2, with cyclists accommodated on the carriageway. Low traffic speeds within the site will encourage cycling.

Public Transport

Bus

There are currently two regular bus services that serve Sully and provide a frequent service between Barry and Cardiff via Penarth.

The 94 Service is operated by Cardiff Bus and provides a half hourly service between Barry and Cardiff via Penarth between Monday and Saturday. An hourly service is provided on Sunday and Bank Holidays.

The 88 service is operated by First Bus and provides a frequent service between Barry and Penarth. An hourly service is provided between Monday and Saturday. There are no services provided on Sundays or Bank Holidays.

Both existing bus services provide regular and convenient linkages to branch line railway stations at Cadoxton and Penarth.
3.22 Details of the existing bus services are shown in Table 5.1 however there are also regular school bus services serving the existing residential areas of Sully.

Table 5.1 - Summary of Bus Services in the Vicinity of the Site

Route No.	Route	Mon - Friday		Saturday		Sunday		Operator	Nearest Stop
		First	Last	First	Last	First	Last		
88	Barry - Sully - Penarth	0715	1815	0715	1815	-	-	Harton Coaches	Post Office
	Penarth - Sully - Barry	0738	1838	0738	1838	-	-	Harton Coaches	Post Office
94	Barry - Sully - Penarth - Cardiff	0630	2232	07:33	22:32	07:01	22:25	Cardiff Bus	Post Office
	Cardiff - Penarth - Sully - Barry	0737	2327	07:43	23:27	08:02	23:28	Cardiff Bus	Post Office
P133 (School Service)	Sully - St Joseph's RC Primary School	08:50	-	-	-	-	-	N.A.T. Group	Post Office
	St Joseph's RC Primary School	16:24	-	-	-	-	-	N.A.T. Group	Post Office

3.23 There are a number of bus stops located along South Road. The closest stops which are accessible via continuous footways from the development site are the Post Office stops near the junction with South Road and Arlington Drive. A zebra crossing on South Road assists pedestrians to cross at this location in order to access the Barry bound services.
3.24 There are also bus stops with shelters that are located to the west of the Lavernock Road/Swanbridge Road junction which are closer to the development site. These would be the closest to the development subject to the provision of new pedestrian links along Swanbridge Road.
3.25

The bus stops located at the Post Office are approximately 700m from the centre of the site using the existing footpath network that runs parallel to the western boundary of the site.

The stops at the Lavernock Road/South Road junction are approximately 650 m from the centre of the site.

Rail

Whilst Sully is not served by a direct rail service, the closest railway station is located at Cadoxton (Barry) which is located approximately 3.9 km from the site. Cadoxton is on the Barry and Vale of Glamorgan line that provides a 15 min frequency service between Barry and Cardiff during the daytime.

Penarth railway station is approximately 5 km to the east of Sully and on the Penarth Line. A 15 min service operates on this line during the daytime. Park and Ride facilities are available at both stations. 31 car parking spaces are available 24 hours a day, Monday to Sunday at Cadoxton Rail Station and 15 car parking spaces are available 24 hours a day Monday to Sunday at Penarth Rail Station. Car parking is currently free of charge at both stations.

Summary

The existing site is located adjacent to the settlement of Sully and is conveniently located to benefit from existing pedestrian and cycle connections to local amenities within Sully which is typical of a settlement in a semi-rural area.

In terms of the wider connections, there are reasonable linkages, by a choice of modes, to other neighbouring settlements including Penarth and Barry that offer a wider variety of amenities and employment.

4 OBJECTIVES AND BENEFITS

Mission Statement

4.1 The main aim of this ITP is to put in place the management tools deemed necessary to enable residents to make informed decisions about travel, which at the same time minimises the adverse impacts of travel on the environment. This is achieved by setting out a strategy for eliminating barriers that prevent residents from making use of sustainable modes. Use of such modes will reduce single-occupancy vehicle use.
4.2 Improving the transport choices available to people, rather than focusing on providing for the private car, will lead to a more equitable and sustainable development that provides travel options for all regardless of whether or not they own a car.

Objectives

4.3 The transport principles for the proposed residential development reflect the following sustainable objectives:

- Reduced level of car use, particularly single occupancy car use;
- Encouragement of residents to use alternative modes of transport to the private car; and,
- Increased awareness of the environmental and social benefits of using alternative modes of transport.
4.4 These objectives are consistent with the objectives set out within policy guidance which aims to increase accessibility to services, reduce the impact and effect of congestion and widen travel choice.
4.5 The more detailed objectives of the ITP are to:
- Increase resident awareness of the advantages and availability of sustainable modes, but particularly active modes;
- Actively promote sustainable transport options for travel to and from the proposed residential development, to enable informed decisions about how to travel to be made by residents;
- Increase the use of active and sustainable travel modes (particularly for shorter trips), and to encourage residents to build active travel into their everyday routines to support and contribute to wider health benefits;
- Enhance as far as is practical the accessibility of the proposed residential development by active modes at all times; and
- Raise awareness of the impacts of travel choices on health, the local environment etc.

Benefits

4.6 The achievement of the objectives will bring about a wide range of benefits for residents and the wider community.
4.7 The resident benefits will be:

- Health benefits associated with walking and cycling, including reduced levels of stress;
- The opportunity to save money by using alternative modes of travel to the car; and,
- Improved quality and reliability of journeys.
4.8 The benefits to the wider community will be:
- A step-change in travel attitudes which should lead to reductions in vehicular generated traffic on the local highway network and a contribution towards overall reduction in travel emissions.

5 TARGETS

5.1 In order to assess whether the full Travel Plan is successful in achieving its objectives, a set of targets have been set within this ITP.
5.2 All targets need to be SMART; that is Specific, Measureable, Achievable, Realistic and Time related.
5.3 There are two types of targets, namely: 'Action' and 'Aim' targets. Action targets set out specific commitments to implement measures to ensure delivery. Aim targets provide numerical goals for mode shift.

Action Targets

5.4 The key action targets are set out below. These will be included within an Action Plan to form part of the full Travel Plan:

- A Travel Plan Co-ordinator (TPC) will be appointed prior to first occupation of the proposed residential development;
- \quad The first travel plan survey will be undertaken within 3 months of meaningful occupation of the proposed residential development;
- A finalised Travel Plan will be agreed within 6 months of meaningful occupation of the proposed residential development.

Aim Targets

5.5 Table 5.1 outlines the proposed Aim Targets. The baseline mode split figures should be taken from the results of the baseline survey, which will be undertaken within 3 months of meaningful occupation.
5.6 It is recognised that it is not always possible to set accurate targets for distant future dates, even when targets are based on up to date modal share data. For this reason targets will change over time as the results of on-going monitoring become available. The revision of targets will be discussed VoG Council as necessary.

Table 5.1: Travel Plan AIM Targets

Target	Indicator	Mode Split		
		Baseline	Year 3	Year 5
Employees				
Achieve a 10\% decrease in single occupancy vehicle trips	Modal split monitoring surveys for SOV use	As surveyed	-5\%	-10\%
Achieve an increase in use of alternative modes to offset reduction in SOV use. Modes to include: Walking Cycling Car share Public transport	Modal Split monitoring surveys for public transport	As surveyed	+5\%	+10\%
Residents				
Increase awareness of Public Transport options by 10\%	Snapshot surveys	As surveyed	+5\%	+10\%
Increase awareness of cycling and walking options available to access the store by 10%	Snapshot surveys	As surveyed	+5\%	+10\%

5.7 Within 3 months of meaningful occupation of the proposed residential development the baseline survey will be undertaken to establish baseline travel patterns. Within 6 months of meaningful occupation of the proposed residential development the full Travel Plan will be finalised and targets agreed with VoG Council as necessary.

6 TRAVEL PLAN MEASURES

Introduction

6.1 This section of the ITP outlines the measures that will be introduced as part of the development proposals to help achieve the objectives of the ITP, together with the measures which could be introduced by the management company.

Measures - Development Proposals

6.2 As detailed in Section 3, the physical design and layout of the site will encourage residents to undertake journeys by sustainable modes.

Travel Pack

6.3 All residents will be provided with a Travel Pack when they move in to their property. This Travel Pack will include the following information:

- Name and contact details of the TPC and the availability of the TPC to speak with residents;
- An introduction to the Travel Plan, its purpose, and a summary document;
- Information on the health benefits of using active modes of transport;
- Bus route maps and timetables and any other public transport information; and
- Map showing walking and cycling routes close to the proposed residential development;
6.4 The Travel Packs will have a comment card / return slip to ensure that they are being used.

Personalised Travel Planning

6.5 The TPC will offer a personalised Travel Planning service for all residents. It is expected that this will be offered during induction sessions run for residents.
6.6 The TPC will be able to draw on advice from journey planning websites such as Transport Direct (www.transportdirect.org.uk).

Public Transport

6.7 Details of local bus and rail services will be made available to residents.
6.8 The TPC will hold discussions with local bus operators to see if any enhancements or amendments can be made to services for the benefit of residents.

Walking and Cycling

6.9 The following measures could promote walking and cycling to and from the proposed residential development:

- The TPC will raise awareness of the health benefits of walking and cycling.
- If there is sufficient demand a Bicycle User Group (BUG) will be set up by the TPC to provide suggestions for further improvements to encourage cycle use.

7 MONITORING AND REVIEW

7.1 It is important a thorough Travel Plan monitoring system is put in place. The two main reasons for monitoring of the Travel Plan are:

- To provide feedback so the Travel Plan can be refined; and,
- To measure the level of success in meeting identified targets using key performance indicators.
7.2 A framework for the monitoring and review strategy is outlined in this section.

Monitoring Strategy

7.3 The Travel Plan will be a living document, allowing for continuous development and refinement which will ensure it remains relevant.
7.4 The monitoring programme will begin with the baseline survey, to be undertaken within 3 months of meaningful occupation of the proposed residential development. The baseline survey will be marketed by the TPCs to encourage a high response rate.
7.5 Further surveys will be carried out annually up to and including Year 5, to monitor progress towards the interim and final targets.
7.6 To judge whether the implementation or proportion of certain measures needs to be modified monitoring of the following will also be undertaken:

- The level of usage of bus passes;
- Levels of parking;
- Comments received from residents relating to the operation and implications of the Travel Plan.

Reporting

7.7 An Annual Travel Plan Review will be undertaken by the TPC every year for a period of 5 years from the commencement of the Travel Plan. This review will assess the progress of the Travel Plan. This will outline the results of the monitoring in the preceding period, measures that have been implemented and any suggested changes to targets and measures as a result of the survey data.

7.8 The monitoring report will include the following aspects:

- Site name and address;
- A summary of the Travel Plan;
- How and when monitoring information was gathered;
- Whether travel patterns are meeting objectives and targets; and
- Proposals to further develop the Travel Plan and make revisions to measures and targets if targets are not being met.

APPENDIX G

Accidents reported to the police, and subsequently recorded on Stats19 returns by year and location:

		2011	2012	2013	2014	2015	Total
		7	11	8	7	7	40
Year	AccidentReference	Severity	Easting	Northing			
2011	0208574	Slight	315,710	168,680			
2011	0208805	Slight	314,360	169,120			
2011	0209901	Slight	314,480	169,160			
2011	0210539	Slight	316,320	168,750			
2011	0213652	Slight	314,450	169,190			
2011	0213823	Slight	315,450	168,190			
2011	0213910	Slight	315,050	168,280			
2012	0214371	Slight	316,410	167,940			
2012	0214641	Slight	314,510	169,150			
2012	0214825	Slight	314,610	168,710			
2012	0215510	Slight	314,490	169,160			
2012	1200105	Slight	314,900	168,290			
2012	1200703	Slight	314,490	169,170			
2012	1200898	Slight	314,900	168,230			
2012	1200985	Slight	314,580	169,180			
2012	1201001	Slight	314,300	169,030			
2012	1201099	Slight	314,550	169,010			
2012	1300011	Slight	314,480	169,190			
2013	1300615	Slight	315,960	167,930			
2013	1300910	Slight	316,410	167,940			
2013	1300923	Slight	314,690	169,240			
2013	1300992	Slight	314,480	169,140			
2013	1301203	Slight	315,530	168,150			
2013	1302044	Serious	314,500	169,150			
2013	1302280	Slight	314,350	169,110			
2013	1302355	Slight	314,390	169,300			
2014	1400372	Slight	314,508	169,149			
2014	1400499	Slight	315,459	168,196			
2014	1400760	Serious	316,357	168,807			
2014	1401253	Slight	315,174	168,267			
2014	1401432	Slight	314,511	169,152			
2014	1401693	Slight	314,901	168,277			
2014	1401797	Serious	314,867	169,309			
2015	1500255	Slight	316,362	168,818			
2015	1500415	Serious	315,829	167,997			
2015	1500578	Slight	315,590	168,124			
2015	1500837	Serious	316,416	167,948			
2015	1501312	Slight	315,542	168,146			
2015	1501388	Slight	314,513	169,154			
2015	1501622	Slight	314,655	168,562			

[^0]: ${ }^{1}$ http://www.sustrans.org.uk/sites/default/files/documents/sustrans_mhls_evidence_100511.pdf

[^1]: ${ }^{2}$ National Travel Survey 2010/14

[^2]: ${ }^{3}$ Start Active, Stay Active - A report on physical activity for health from the four home countries' Chief Medical Officer, July 2011

[^3]: ${ }^{4} \mathrm{http}: / /$ www.sustrans.org.uk/sites/default/files/documents/sustrans_mhls_evidence_100511.pdf

